Tensorflow2.0 评价模型复杂度:参数量、FLOPs 和 MACC 计算

本文介绍如何在Tensorflow2.0下评估深度学习模型的复杂度,涉及参数量、FLOPs和MACC的计算。以MobileNet V2为例,分别展示迁移学习网络和自编写的网络中如何提取和计算相关指标。通过查看网络结构,提取卷积层,并基于层的输出形状计算FLOPs和MACC。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

项目介绍

在论文写作时,我们经常会对所提出模型的复杂度进行分析,主要用到的评价指标包括参数量、FLOPs 和 MACC,它们的计算原理可以参考《卷积、可分离卷积的参数量、计算量与 MACC 的对比》一文,在此文章中,我们着重介绍如何在 Tensorflow2.0 中计算这些参数。

【注】由于迁移学习网络和自编写网络的命名规则不同,这里针对两种情况提供两段代码。

代码实现:对于迁移学习网络(复杂)

我们使用迁移学习到的 MobileNet V2 网络举例。

1、迁移学习不带分类层的简化版 MobileNet V2 网络

import tensorflow as tf

mobilev2 = tf.keras
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

cofisher

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值