项目说明
旋转机械设备出现故障损伤时,振动信号中通常包含有规律性的故障特征,其提取对于设备故障诊断具有重要意义。但由于噪声干扰、传递路径衰减、多振源耦合等因素,往往需要对振动信号进行降噪处理,如滤波器降噪、小波阈值降噪、SVD 降噪以及经验模态分解降噪等,才能顺利提取出故障特征。此外,在旋转机械设备平稳运行工况下,适应于振动信号的周期性变化特征,时域同步平均降噪方法也得到了广泛应用。
TSA 降噪原理
旋转机械设备运行时的振动信号为y(t)y(t)y(t),采样时间间隔为ΔtΔtΔt,则采样振动信号为y(kΔt)y(kΔt)y(kΔt),记作y(k),k=0,1,…,Ny(k), k=0, 1, …, Ny(k),k=0,1,…,N(NNN为振动信号采样数据点数)。若y(k)y(k)y(k)由周期为NTN_TNT(NTN_TNT为一个时间周期内的采样数据点数)的特征信号s(k)s(k)s(k)和白噪声sn(k)s_n(k)sn(k)组成,即
那么将y(k)y(k)y(k)以整数周期zNTzN_TzNT(zzz为正整数)的数据长度进行分段,总共分成PPP段,其中第p(p=0,1,…,P−1)p (p=0, 1, …, P-1)p(p=0,1,…,P−1)段信号表示为
式中k′=1,2,…,zNTk'=1, 2, … , zN_Tk′=1,2,…,zNT。将PPP段信号相加,鉴于白噪声的不相干特性,可以得到
设输出信号为
则
由此可见,输出信号y′(k′)y'(k')y′(k′)中的白噪声是原来信号y(k)y(k)y(k)中白噪声的1/P1/\sqrt{P}1/P倍,信噪比(Signal toNoise Ratio,SNR)则提高到了PPP倍,且分段数PPP越大,SNR 越高,这就是传统TSA降噪的基本原理。