leetcode刷题---300.最长递增子序列

本文讲解如何使用Python解决求整数数组最长递增子序列问题,通过动态规划的方法求解,并分析了算法的时间复杂度和空间复杂度。关键步骤包括定义dp数组并计算状态转移,最终返回dp中的最大值。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目描述

给你一个整数数组 numsnumsnums ,找到其中最长严格递增子序列的长度。

子序列是由数组派生而来的序列,删除(或不删除)数组中的元素而不改变其余元素的顺序。例如,[3,6,2,7][3,6,2,7][3,6,2,7] 是数组 [0,3,1,6,2,2,7][0,3,1,6,2,2,7][0,3,1,6,2,2,7] 的子序列。

示例

输入:nums = [10,9,2,5,3,7,101,18]
输出:4
解释:最长递增子序列是 [2,3,7,101],因此长度为 4 。
输入:nums = [7,7,7,7,7,7,7]
输出:1

解题思路

定义 dp[i]dp[i]dp[i] 为考虑前 iii 个元素,以第 iii 个数字结尾的最长上升子序列的长度,注意,nums[i]nums[i]nums[i] 必须被选取。

我们从小到大计算 dpdpdp 数组中的值,在计算 dp[i]dp[i]dp[i] 之前,我们已经计算出 dp[1,...,i−1]dp[1,...,i-1]dp[1,...,i1] 的值,则状态转移方程是:

dp[i]=max(dp[j])+1,其中0≤j<i 且num[j]<num[i] dp[i]=max(dp[j])+1,其中0≤j<i~且num[j]<num[i] dp[i]=max(dp[j])+1,其中0j<i num[j]<num[i]

即考虑在 dp[1,...,i−1]dp[1,...,i-1]dp[1,...,i1] 中最长的上升子序列后面再加一个 nums[i]nums[i]nums[i]。由于 dp[j]dp[j]dp[j] 代表 nums[0,...,j]nums[0,...,j]nums[0,...,j] 中以 nums[j]nums[j]nums[j] 结尾的最长上升子序列,所以,如果状态能转移过来,必须num[j]<num[i]num[j]<num[i]num[j]<num[i]

最后,整个数组的最长上升子序列即素有 dp[i]dp[i]dp[i] 中的最大值。

代码

class Solution:
    def lengthOfLIS(self, nums: List[int]) -> int:

        length = len(nums)
        dp = [1]*(length)
        dp[0] = 1

        for i in range(length):
            for j in range(i):
                if nums[i] > nums[j]:
                    dp[i] = max(dp[i],dp[j]+1)

        return max(dp)

复杂度

  • 时间复杂度 O(n2)O(n^2)O(n2);
  • 空间复杂度 O(n)O(n)O(n)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值