题目描述
给你一个整数数组 numsnumsnums ,找到其中最长严格递增子序列的长度。
子序列是由数组派生而来的序列,删除(或不删除)数组中的元素而不改变其余元素的顺序。例如,[3,6,2,7][3,6,2,7][3,6,2,7] 是数组 [0,3,1,6,2,2,7][0,3,1,6,2,2,7][0,3,1,6,2,2,7] 的子序列。
示例
输入:nums = [10,9,2,5,3,7,101,18]
输出:4
解释:最长递增子序列是 [2,3,7,101],因此长度为 4 。
输入:nums = [7,7,7,7,7,7,7]
输出:1
解题思路
定义 dp[i]dp[i]dp[i] 为考虑前 iii 个元素,以第 iii 个数字结尾的最长上升子序列的长度,注意,nums[i]nums[i]nums[i] 必须被选取。
我们从小到大计算 dpdpdp 数组中的值,在计算 dp[i]dp[i]dp[i] 之前,我们已经计算出 dp[1,...,i−1]dp[1,...,i-1]dp[1,...,i−1] 的值,则状态转移方程是:
dp[i]=max(dp[j])+1,其中0≤j<i 且num[j]<num[i] dp[i]=max(dp[j])+1,其中0≤j<i~且num[j]<num[i] dp[i]=max(dp[j])+1,其中0≤j<i 且num[j]<num[i]
即考虑在 dp[1,...,i−1]dp[1,...,i-1]dp[1,...,i−1] 中最长的上升子序列后面再加一个 nums[i]nums[i]nums[i]。由于 dp[j]dp[j]dp[j] 代表 nums[0,...,j]nums[0,...,j]nums[0,...,j] 中以 nums[j]nums[j]nums[j] 结尾的最长上升子序列,所以,如果状态能转移过来,必须num[j]<num[i]num[j]<num[i]num[j]<num[i]。
最后,整个数组的最长上升子序列即素有 dp[i]dp[i]dp[i] 中的最大值。
代码
class Solution:
def lengthOfLIS(self, nums: List[int]) -> int:
length = len(nums)
dp = [1]*(length)
dp[0] = 1
for i in range(length):
for j in range(i):
if nums[i] > nums[j]:
dp[i] = max(dp[i],dp[j]+1)
return max(dp)
复杂度
- 时间复杂度 O(n2)O(n^2)O(n2);
- 空间复杂度 O(n)O(n)O(n)。