今天终于有一个粉丝了,号开心,好吧,继续学习
1. 分割数组
hsplit 数组沿着水平方向分割为3个相同大小的子数组
vsplit 函数将把数组沿着垂直方向分割:
dsplit 函数将按深度方向分割数组
2. 除了 shape 和 dtype 属性以外, ndarray 对象还有很多其他的属性
ndim 属性,给出数组的维数,或数组轴的个数
size 属性,给出数组元素的总个数
itemsize 属性,给出数组中的元素在内存中所占的字节数
如果你想知道整个数组所占的存储空间,可以用 nbytes 属性来查看
T 属性的效果和 transpose 函数一样
对于一维数组,其 T 属性就是原数组
在NumPy中,复数的虚部是用 j 表示的
real 属性,给出复数数组的实部
imag 属性,给出复数数组的虚部
3. numpy数组转换
tolist 函数将NumPy数组转换成Python列表
astype 函数可以在转换数组时指定数据类型:
添加numpy.array(list)可以生成numpy数组
4. 文件读写实例
在NumPy中可以用 eye 函数创建一个对角线为1的二维数组
使用 savetxt 函数将数据存储到文件中,当然我们需要指定文件名以及要保存的数组,np.savetxt("eye.txt", i2)
5.读写csv文件
CSV(Comma-Separated Value,逗号分隔值)格式是一种常见的文件格式。通常,数据库的转存文件就是CSV格式的,文件中的各个字段对应于数据库表中的列。众所周知,电子表格软件(如Microsoft Excel)可以处理CSV文件。
NumPy中的 loadtxt 函数可以方便地读取CSV文件,自动切分字段,并将数据载入NumPy数组
c,v=np.loadtxt('data.csv', delimiter=',', usecols=(6,7), unpack=True)
CSV文件是一种经常用于数据处理的文件格式。我们用 loadtxt 函数读取了一个包含股价数据的CSV文件,用 delimiter 参数指定了文件中的分隔符为英文逗号,用 usecols 中的参数指定了我们感兴趣的数据列,并将 unpack 参数设置为 True 使得不同列的数据分开存储,以便随后使用
6.算术平均值计算
mean函数可以计算数组元素的算术平均值
numpy最大值,最小值max(h),min(l)
ptp 函数可以计算数组的取值范围
7.统计分析
我们可以用一些阈值来除去异常值,但其实有更好的方法,那就是中位数
一个叫做 median 的函数将帮助我们找到中位数
msort排序数据
var计算方差只需要一行代码
diff 函数可以返回一个由相邻数组元素的差值构成的数组
学习中发现:
1. numpy.nan_to_num()把nan, inf等类型值转换成数字型,防止计算出错
2. numpy.sum()计算矩阵总和
3. numpy.linalg.norm(a - y)计算向量的长度,也就是向量之差的绝对值