numpy学习笔记2

这篇博客详细介绍了NumPy中的数组分割方法,包括hsplit、vsplit和dsplit,以及数组的属性如ndim、size和itemsize。还探讨了数组转换、文件读写,特别是CSV文件的处理。进一步讲解了统计分析功能,如算术平均值、中位数、方差和差值计算,强调了在处理异常值和向量长度计算中的实用技巧。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

今天终于有一个粉丝了,号开心,好吧,继续学习

1.  分割数组

hsplit 数组沿着水平方向分割为3个相同大小的子数组

vsplit 函数将把数组沿着垂直方向分割:

dsplit 函数将按深度方向分割数组

 

2.  除了 shape 和 dtype 属性以外, ndarray 对象还有很多其他的属性

ndim 属性,给出数组的维数,或数组轴的个数

size 属性,给出数组元素的总个数

itemsize 属性,给出数组中的元素在内存中所占的字节数

如果你想知道整个数组所占的存储空间,可以用 nbytes 属性来查看

T 属性的效果和 transpose 函数一样

对于一维数组,其 T 属性就是原数组

在NumPy中,复数的虚部是用 j 表示的

real 属性,给出复数数组的实部

imag 属性,给出复数数组的虚部

 

3.  numpy数组转换

tolist 函数将NumPy数组转换成Python列表

astype 函数可以在转换数组时指定数据类型:

添加numpy.array(list)可以生成numpy数组

 

4.  文件读写实例

在NumPy中可以用 eye 函数创建一个对角线为1的二维数组

使用 savetxt 函数将数据存储到文件中,当然我们需要指定文件名以及要保存的数组,np.savetxt("eye.txt", i2)

 

5.读写csv文件

CSV(Comma-Separated Value,逗号分隔值)格式是一种常见的文件格式。通常,数据库的转存文件就是CSV格式的,文件中的各个字段对应于数据库表中的列。众所周知,电子表格软件(如Microsoft Excel)可以处理CSV文件。

NumPy中的 loadtxt 函数可以方便地读取CSV文件,自动切分字段,并将数据载入NumPy数组

c,v=np.loadtxt('data.csv', delimiter=',', usecols=(6,7), unpack=True)

CSV文件是一种经常用于数据处理的文件格式。我们用 loadtxt 函数读取了一个包含股价数据的CSV文件,用 delimiter 参数指定了文件中的分隔符为英文逗号,用 usecols 中的参数指定了我们感兴趣的数据列,并将 unpack 参数设置为 True 使得不同列的数据分开存储,以便随后使用

 

6.算术平均值计算

mean函数可以计算数组元素的算术平均值

numpy最大值,最小值max(h),min(l)

ptp 函数可以计算数组的取值范围

 

7.统计分析

我们可以用一些阈值来除去异常值,但其实有更好的方法,那就是中位数

一个叫做 median 的函数将帮助我们找到中位数

msort排序数据

var计算方差只需要一行代码

diff 函数可以返回一个由相邻数组元素的差值构成的数组

 

 

学习中发现:

1.  numpy.nan_to_num()把nan, inf等类型值转换成数字型,防止计算出错

2.  numpy.sum()计算矩阵总和

3.  numpy.linalg.norm(a - y)计算向量的长度,也就是向量之差的绝对值

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值