愤怒的小鸟

本文通过一道具体的状压动态规划题目,介绍了如何将问题抽象成二进制形式,并利用预处理技巧来解决复杂的问题。文章详细讲解了如何通过枚举和状态转移方程来寻找最优解。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一道状压dp题
把猪压缩为二进制,1代表能打死,0代表不能
然后预处理出任意两个猪组成的曲线,能打死那些猪,然后转移时或一下就行了
dp[i|bit[i][j]]=min dp[i]+1;
一个猪的预处理。

#include<cstdio>
#include<cstring> 
#include<iostream>
#include<cmath>
using namespace std;
int bit[1999][1999],dp[1<<20];
int t,n,m;double x[19999],y[19999];
int main(){
    scanf("%d",&t);
    while(t--){

        scanf("%d%d",&n,&m);memset(dp,127,sizeof dp);dp[0]=0;
        for(int i=1;i<=n;i++)scanf("%lf%lf",&x[i],&y[i]);
        for(int i=1;i<=n;i++)
        for(int j=i+1;j<=n;j++){

            bit[i][j]=0;

            double x1=x[i]*x[i]*x[j];
            double x2=x[i]*x[j]*x[j];
            double y1=y[i]*x[j];
            double y2=y[j]*x[i];
            double a=(y2-y1)/(x2-x1);
            double b=(y[i]-a*x[i]*x[i])/x[i];//加减消元

            if(b>0&&a<0) //必须是开口向下的曲线,必须是右移的
            for(int k=1;k<=n;k++)//枚举猪
            if(fabs(a*x[k]*x[k]+b*x[k]-y[k])<1e-7) bit[i][j]=bit[i][j]|(1<<(k-1));



        }
        for(int i=0;i<=(1<<n)-1;i++){
            int t=1;
            while((i>>t-1)&1) t++;//找第一头猪
            dp[i|(1<<(t-1))]=min(dp[i|(1<<(t-1))],dp[i]+1);
            for(int j=t+1;j<=n;j++)//用任意一头猪,这里用的第一头,与后面的猪组合打死后面的猪
                    dp[i|bit[t][j]]=min(dp[i]+1,dp[i|bit[t][j]]);

        }
        printf("%d\n",dp[(1<<n)-1]);
    }
} 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值