DAGScheduler实现-2.0v

本文详细解析了Apache Spark的任务调度机制,包括DAGScheduler和TaskScheduler的角色与工作流程,阐述了Stage划分原则及任务生成过程,揭示了Spark如何高效处理大规模数据计算。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

转载:https://www.jianshu.com/p/ad9610bcb4d0

 

整体架构

任务调度逻辑视图

DAGScheduler:负责分析用户提交的应用,并根据计算任务的依赖关系建立DAG,且将DAG划分为不同的Stage,每个Stage可并发执行一组task。注:DAG在不同的资源管理框架实现是一样的。

TaskScheduler:DAGScheduler将划分完成的Task提交到TaskScheduler,TaskScheduler通过Cluster Manager在集群中的某个Worker的Executor上启动任务,实现类TaskSchedulerImpl。

Scheduler的实现概述

1)org.apache.spark.scheduler.DAGScheduler

2)org.apache.spark.scheduler.SchedulerBackend

3)org.apache.spark.scheduler.TaskScheduler

SchedulerBackend是一个trait,作用是分配当前可用的资源,即为Task分配计算资源(Executor),并在分配的Executor上启动Task。

TaskScheduler也是一个trait,它的作用是从DAGScheduler接收不同的Stage的任务,并且向集群提交这些任务(并为执行特别慢的任务启动备份任务)。TaskScheduler是实现多种任务调度器的基础,而org.apache.spark.scheduler.TaskSchedulerImpl是唯一实现。TaskSchedulerImpl在以下几种场景下调用org.apache.spark.scheduler.SchedulerBackend#reviveOffers:

1)有新任务提交时

2)有任务执行失败时

3)计算节点(即Executor)不可用时

4)某些任务执行过慢而需要重新分配资源时

每个SchedulerBackend都会对应个唯一的TaskScheduler

任务调度的逻辑图

DAGScheduler

DAGScheduler将应用的DAG划分成不同的Stage,每个Stage由并发执行的一组Task构成,Task的执行逻辑完全相同,只是作用于不同数据。

DAGScheduler的创建

TaskScheduler和DAGScheduler在SparkContext创建时创建。

TaskScheduler通过org.apache.spark.SparkContext#createTaskScheduler创建。

// Create and start the scheduler

val(sched,ts) = SparkContext.createTaskScheduler(this,master)

DAGScheduler通过直接调用其构造函数创建,同时DAGScheduler保存了TaskScheduler的引用,因此需要在TaskScheduler创建后创建

def this(sc: SparkContext) = this(sc,sc.taskScheduler)

this(sc,sc.taskScheduler)实现

完成DAGScheduler创建

MapOutputTrackerMaster:运行在Driver管理Shuffle Map Task输出,下游的Task通过MapOutputTrackerMaster获取Shuffle输出的位置信息。

BlockManagerMaster:也是运行在Driver端,管理整个Job的Block信息。

DAGScheduler除了初始化用于保存集群状态信息的数据结构,还会创建一个Actor,用于处理各种信息。

Job提交

以RDD的action count为例:

1)org.apache.spark.rdd.RDD#count

RDD

2)org.apache.spark.SparkContext#runJob

SparkContext

3)org.apache.spark.scheduler.DAGScheduler#runJob

DAGScheduler

submitJob首先为Job生成一个Job ID,并且生成一个JobWaiter的实例监听Job的执行情况

Job由多个Task组成,只有所有Task都成功完成,Job才标记为成功。若失败,则通过jobFailed方法处理。

4)org.apache.spark.scheduler.DAGScheduler#submitJob

DAGScheduler

5)org.apache.spark.util.EventLoop#post

EventLoop

当eventProcessLoop对象投递了JobSubmitted事件之后,对象内的eventThread线程实例对事件进行处理,不断从事件队列中取出事件,调用onReceive函数处理事件,当匹配到JobSubmitted事件后,调用DAGScheduler的handleJobSubmitted函数并传入jobid、rdd等参数来处理Job。

DAGScheduler::submitJob会创建JobSummitted的event发送给内嵌类eventProcessActor(在源码1.4中,submitJob函数中,使用DAGSchedulerEventProcessLoop类进行事件的处理)

6)org.apache.spark.scheduler.DAGScheduler#handleJobSubmitted

DAGScheduler

Stage的划分

finalStage

1、划分依据

宽依赖:需要Shuffle,Spark根据宽依赖将Job划分不同的Stage

窄依赖:RDD的每个Partition依赖固定数量的parent RDD的Partition,可以通过一个Task并行处理这些相互独立的Partition

2、划分过程

RDD划分示意图

Stage的划分是从最后一个RDD开始,RDD会从SparkContext的runJob开始,通过以下调用栈对Stage划分:

1)org.apache.spark.SparkContext#runJob

2)org.apache.spark.scheduler.DAGScheduler#runJob

3)org.apache.spark.scheduler.DAGScheduler#submitJob

4)org.apache.spark.util.EventLoop#post

5)org.apache.spark.scheduler.DAGScheduler#handleJobSubmitted

handleJobSubmitted开始Stage的划分

handleJobSubmitted

newResultStage

newResultStage首先会获取当前Stage的Parent Stages,然后创建当前的Stage。

getParentStages

调用getParentStages,把父Stage创建出来,然后根据它们创建当前Stage。

getParentStages是划分Stage的核心实现,每遇到一个ShuffleDependency就会生一个parent Stage。

376:存储parent stage

377:存储已经被访问的RDD

380:存储需要被处理的RDD,Stack中的RDD都需要被处理

381:广度优先遍历RDD生成的依赖树

386:逐个处理当前RDD依赖的parent RDD

389:在依赖是ShuffleDependency时生成新的stage

391:不是ShuffleDependency,则属于同一个stage

396:以输入的rdd作为第一个需要处理的RDD,然后从该RDD开始,顺序处理其parent rdd

397:如果stack非空,则一直处理

398:每次visit如果遇到了ShuffleDependency,那么就会形成一个stage,否则这些RDD属于同一个stage

getShuffleMapStage

280~281:根据suffleId是否存在

282:如果创建则直接返回

285:注册该stage的Shuffle依赖,如果Stage的Parent Stage是否已经生成,没有则生成它们

getAncestorShuffleDependencies

289:生成当前RDD的Stage

newOrUsedShuffleStage

354~355:Stage已经被计算过则从newShuffleMapStage中获取计算结果

359:计算结果复制到stage中

366:向mapOutputTracker注册该Stage

ShuffleMapTask的计算结果通过Driver端的mapOutputTracker,其他Task可以从中获取结果。mapOutputTracker.registerShuffle实现了这些元数据的占位,ShuffleMapTask通过registerMapOutputs保存这些计算结果(数据位置、大小等元数据)。

任务生成

handleJobSubmitted

handleJobSubmitted

handleJobSubmitted调用handleJobSubmitted提交Stage。所有parent Stage都计算完成,才能提交。

submitStage

submitMissingTasks(stage,jobId.get):如果所有parent stage已经完成,则提交stage所包含的task

submitStage(parent):有parent stage未完成,则递归提交

abortStage:无效stage,直接停止

Stage提交顺序图

org.apache.spark.scheduler.DAGScheduler#submitMissingTasks完成DAGScheduler最后的工作,向TaskScheduler提交Task。

1、获取需要计算的Partition:最后的Stage判断RusultTask是否已经结束

2、对于其他Stage,对应的Task是ShuffleMapTask

DAGScheduler完成任务提交后,在判断哪些Partition需要计算,就会为Partition生成Task,然后封装成TaskSet,提交至TaskScheduler。等待TaskScheduler最终向集群提交这些Task,监听这些Task的状态。

 

### Spark 中 DAGScheduler 的工作原理 #### RDD Action 触发机制 Spark采用惰性计算模式,即所有的转换操作(Transformation)并不会立即执行,而是记录下要执行的操作。只有遇到行动操作(Action),才会真正触发任务的执行[^1]。 例如,在下面这段代码中: ```scala val someRDD = spark.sparkContext.textFile("xxx/xx.csv") someRDD.count() ``` `count()`是一个典型的Action操作,这将启动整个作业流程并最终由DAGScheduler负责调度各个阶段的任务来完成该请求。 #### DAGScheduler 处理 Job 提交的过程 当接收到一个Job提交时,DAGScheduler通过一系列的方法调用来处理这个请求: - `handleJobSubmitted`: 接收新的job提交事件。 - `submitStage`: 尝试提交指定stage给TaskScheduler- `getMissingParentStages`: 获取缺失父级stages以便于构建完整的依赖关系图。 - `submitMissingTasks`: 对那些尚未被安排的任务创建task集合并交给底层scheduler去运行这些tasks[^4]。 #### Stage 划分原则 为了提高效率,DAGScheduler会根据宽窄依赖关系把逻辑计划拆分成多个物理执行单元——称为“Stage”。具体来说,如果存在shuffle操作,则会被认为是不同stag之间的边界;而对于只涉及narrow dependency的情况则尽可能放在同一个stage里面一起执行以减少数据传输开销[^2]。 #### Task 分配策略 对于每一个待分配出去的任务而言,DAGScheduler还需要决定它们应该在哪里被执行最为合适。通常情况下会选择离输入数据最近的地方作为首选项之一,以此降低网络带宽消耗并加快整体进度。 --- ### 使用方法概述 在实际应用过程中开发者并不需要直接与DAGScheduler打交道,因为这一切都已经被封装好了。只需要按照正常的API编写程序即可自动享受到优化后的性能表现。不过理解上述概念有助于更好地设计应用程序结构以及排查可能出现的问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值