Beam Search 原理详解


1. 前言

Beam Search 是一种启发式图搜索算法,用于在图或树的搜索过程中寻找最有可能的路径。它常用于自然语言处理(NLP)中的序列生成任务,如机器翻译、语音识别和文本生成等。与穷举搜索(如广度优先搜索)不同,Beam Search 通过限制搜索过程中的候选节点数量来提高效率,从而在保证搜索质量的同时减少计算资源的消耗。

2. 原理

Beam Search 的核心思想是维护一个固定大小的候选列表(称为 beam),在每一步中,算法只保留最有可能的几个候选节点,而不是考虑所有可能的节点。这个“最有可能”的判断通常基于节点的累积得分,该得分是节点从起始点到当前节点路径的得分之和。

以下是 Beam Search 的基本步骤:

  1. 初始化:将起始节点(通常是序列的开始标记)加入到候选列表中,并将其得分设为0。

  2. 扩展节点:对于候选列表中的每个节点,生成所有可能的后继节点,并计算每个后继节点的得分。

  3. 选择和更新:根据得分,从所有生成的后继节点中选择得分最高的 beam 个节点,将它们加入到候选列表中,并更新它们的得分。

  4. 终止条件:重复步骤2和3,直到达到预设的终止条件,例如达到序列的最大长度,或者候选列表中没有新的节点生成。

  5. 选择最终结果:从候选列表中选择得分最高的节点作为搜索结果。

Beam Search 的关键参数是 beam 的宽度,即在每一步中保留的候选节点数量。beam 的宽度越大,搜索过程越接近穷举搜索,计算成本也越高;beam 的宽度越小,搜索过程越快,但可能丢失一些好的候选节点。

在实际应用中,Beam Search 已被证明是一种有效的搜索策略,特别

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

SmallerFL

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值