1. 前言
Beam Search 是一种启发式图搜索算法,用于在图或树的搜索过程中寻找最有可能的路径。它常用于自然语言处理(NLP)中的序列生成任务,如机器翻译、语音识别和文本生成等。与穷举搜索(如广度优先搜索)不同,Beam Search 通过限制搜索过程中的候选节点数量来提高效率,从而在保证搜索质量的同时减少计算资源的消耗。
2. 原理
Beam Search 的核心思想是维护一个固定大小的候选列表(称为 beam),在每一步中,算法只保留最有可能的几个候选节点,而不是考虑所有可能的节点。这个“最有可能”的判断通常基于节点的累积得分,该得分是节点从起始点到当前节点路径的得分之和。
以下是 Beam Search 的基本步骤:
-
初始化:将起始节点(通常是序列的开始标记)加入到候选列表中,并将其得分设为0。
-
扩展节点:对于候选列表中的每个节点,生成所有可能的后继节点,并计算每个后继节点的得分。
-
选择和更新:根据得分,从所有生成的后继节点中选择得分最高的 beam 个节点,将它们加入到候选列表中,并更新它们的得分。
-
终止条件:重复步骤2和3,直到达到预设的终止条件,例如达到序列的最大长度,或者候选列表中没有新的节点生成。
-
选择最终结果:从候选列表中选择得分最高的节点作为搜索结果。
Beam Search 的关键参数是 beam 的宽度,即在每一步中保留的候选节点数量。beam 的宽度越大,搜索过程越接近穷举搜索,计算成本也越高;beam 的宽度越小,搜索过程越快,但可能丢失一些好的候选节点。
在实际应用中,Beam Search 已被证明是一种有效的搜索策略,特别