2014年第五届C/C++ B组蓝桥杯省赛真题

本文介绍了10个有趣的编程题目,涵盖了数学、逻辑和递归等概念。题目包括啤酒和饮料的购买计算、面条切割、李白打酒的故事、史丰收速算方法、图形打印、奇怪的分数计算、六角形填数游戏、蚂蚁感冒传播、地宫寻宝路径和小朋友排队问题。这些题目锻炼了程序员的思维能力和算法实现能力。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

第一题:啤酒和饮料

  • 题目描述
    啤酒每罐2.3元,饮料每罐1.9元。小明买了若干啤酒和饮料,一共花了82.3元。我们还知道他买的啤酒比饮料的数量少,请你计算他买了几罐啤酒。
  • 题目分析
    简单的循环暴力,两层循环就可
  • 题目代码
#include<bits/stdc++.h>
using namespace std;
int main()
{
	double i,j,n;
	for(i=1;i<500;i++)
	for(j=1;j<500;j++)
	{
		if(2.3*i+1.9*j==82.3)
		{
			if(i<j)
             {
		    	cout<<i<<endl;
		    	cout<<j<<endl;
			    break;	
	      	  }
	     }
       }
}

第二题:切面条

  • 题目描述
    一根高筋拉面,中间切一刀,可以得到2根面条。
    如果先对折1次,中间切一刀,可以得到3根面条。
    如果连续对折2次,中间切一刀,可以得到5根面条。
    那么,连续对折10次,中间切一刀,会得到多少面条呢?
  • 题目分析
    2^10+1=1025
    这里可以从前3个得到规律,如果每个线的拐弯处没有连接,则会有2的N次条,正因为有对折处,所以就会减少条数。我们可以看出每次对折处增加次数为等比数列,所以最终的条数无对折的情况下减去对折的数。
  • 题目代码
#include<iostream>
#include<cmath>
using namespace std;

int main()
{
	//计算对折拐弯处数目(等比公式推导)
	int a = pow(2,10)-1;
	//无对折情况下数目
	int b = pow(2,11);
	//最后面条数目
	cout << b-a;
	return 0;
} 

第三题:李白打酒

  • 题目描述
    话说大诗人李白,一生好饮。幸好他从不开车。
    一天,他提着酒壶,从家里出来,酒壶中有酒2斗。他边走边唱:
    无事街上走,提壶去打酒。
    逢店加一倍,遇花喝一斗。
    这一路上,他一共遇到店5次,遇到花10次,已知最后一次遇到的是花,他正好把酒喝光了。
    请你计算李白遇到店和花的次序,可以把遇店记为a,遇花记为b。则:babaabbabbabbbb 就是合理的次序。像这样的答案一共有多少呢?请你计算出所有可能方案的个数(包含题目给出的)。

  • 题目分析
    递归主要找出 临界值
    进入下一步的每个变量的变化

  • 题目代码

#include<bits/stdc++.h>
using namespace std;
char a[20];
int t=0;
void f(int i,int store,int flower,int wine)
{
	if(store>5||flower>10)return;
	else if(store==5&&flower==10&&wine==0&&a[14]=='b')
	{
		t++;
		for(int i=0;i<=14;i++)
		cout<<a[i];
		cout<<endl;
	}
	a[i]='a';
	f(i+1,store+1,flower,wine*2);
	a[i]='b';
	f(i+1,store,flower+1,wine-1);
	
}
int main()
{
f(0,0,0,2);
cout<<t<<endl;
return 0;
}
#include<bits/stdc++.h>
using namespace std;

int num = 0;
void f(int flower,int store,int sum) //flower记录遇到花的次数,store记录遇到店的次数,
                                     // sum为当前酒的总数
{
	if(flower>9 || store>5)   // 判断递归的出口对于递归来说十分关键
		return;
	if(flower==9 && store==5&&sum==1)   //由题意最后一次肯定为花,因此在倒数第二次时的情况为
	{
		num++;//经过9次花,5次店,并且剩下了一斗酒sum=1
	}
	f(flower+1,store,sum-1);   //遇花喝一斗,即sum-1
	f(flower,store+1,sum*2);   //遇店多一倍,即sum*2
}

int main ()
{
	f(0,0,2);  //初次递归的初始条件
	printf("%d",num);
	return 0;
}

第四题:史丰收速算

  • 题目描述
    史丰收速算法的革命性贡献是:从高位算起,预测进位。不需要九九表,彻底颠覆了传统手算!
    速算的核心基础是:1位数乘以多位数的乘法。
    其中,乘以7是最复杂的,就以它为例。
    因为,1/7 是个循环小数:0.142857…,如果多位数超过 142857…,就要进1
    同理,2/7, 3/7, … 6/7 也都是类似的循环小数,多位数超过 n/7,就要进n
    下面的程序模拟了史丰收速算法中乘以7的运算过程。
    乘以 7 的个位规律是:偶数乘以2,奇数乘以2再加5,都只取个位。
    乘以 7 的进位规律是:
    满 142857… 进1,
    满 285714… 进2,
    满 428571… 进3,
    满 571428… 进4,
    满 714285… 进5,
    满 857142… 进6
    请分析程序流程,填写划线部分缺少的代码。
//计算个位 
int ge_wei(int a)
{
	if(a % 2 == 0)
		return (a * 2) % 10;
	else
		return (a * 2 + 5) % 10;	
}

//计算进位 
int jin_wei(char* p)
{
	char* level[] = {
		"142857",
		"285714",
		"428571",
		"571428",
		"714285",
		"857142"
	};
	
	char buf[7];
	buf[6] = '\0';
	strncpy(buf,p,6);
	
	int i;
	for(i=5; i>=0; i--){
		int r = strcmp(level[i], buf);
		if(r<0) return i+1;
		while(r==0){
			p += 6;
			strncpy(buf,p,6);
			r = strcmp(level[i], buf);
			if(r<0) return i+1;
			______________________________;  //填空
		}
	}
	
	return 0;
}

//多位数乘以7
void f(char* s) 
{
	int head = jin_wei(s);
	if(head > 0) printf("%d", head);
	
	char* p = s;
	while(*p){
		int a = (*p-'0');
		int x = (ge_wei(a) + jin_wei(p+1)) % 10;
		printf("%d",x);
		p++;
	}
	
	printf("\n");
}

int main()
{
	f("428571428571");
	f("34553834937543");		
	return 0;
}

  • 题目分析
    对于这种代码填空题的心得就是要看填空的上下文。
    常见的就是如果改填空处上下方有递归,则此处大概率是递归的调用,或者上下是一个if判断预期,则填空处就是判断的另一张情况,此处就是第二种。
    具体解析可看此处: 解析.
  • 题目代码
if(r>0) return i;

第五题:打印图形

  • 题目描述
    小明在X星球的城堡中发现了如下图形和文字:
    rank=3
   * 
  * * 
 *   *  
* * * *

rank=5

               *                                                     
              * *                                                    
             *   *                                                   
            * * * *                                                  
           *       *                                                 
          * *     * *                                                
         *   *   *   *                                               
        * * * * * * * *                                              
       *               *                                             
      * *             * *                                            
     *   *           *   *                                           
    * * * *         * * * *                                          
   *       *       *       *  
  * *     * *     * *     * *  
 *   *   *   *   *   *   *   * 
* * * * * * * * * * * * * * * *  

ran=6

                               *                                     
                              * *                                    
                             *   *                                   
                            * * * *                                  
                           *       *                                 
                          * *     * *                                
                         *   *   *   *                               
                        * * * * * * * *                              
                       *               *                             
                      * *             * *                            
                     *   *           *   *                           
                    * * * *         * * * *                          
                   *       *       *       *                         
                  * *     * *     * *     * *                        
                 *   *   *   *   *   *   *   *                       
                * * * * * * * * * * * * * * * *                      
               *                               *                     
              * *                             * *                    
             *   *                           *   *                   
            * * * *                         * * * *                  
           *       *                       *       *                 
          * *     * *                     * *     * *                
         *   *   *   *                   *   *   *   *               
        * * * * * * * *                 * * * * * * * *              
       *               *               *               *             
      * *             * *             * *             * *            
     *   *           *   *           *   *           *   *           
    * * * *         * * * *         * * * *         * * * *          
   *       *       *       *       *       *       *       *         
  * *     * *     * *     * *     * *     * *     * *     * *        
 *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *       
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *       

小明开动脑筋,编写了如下的程序,实现该图形的打印。

#define N 70

void f(char a[][N], int rank, int row, int col)
{
	if(rank==1){
		a[row][col] = '*';
		return;
	}
	
	int w = 1;
	int i;
	for(i=0; i<rank-1; i++) w *= 2;
	
	____________________________________________;
	f(a, rank-1, row+w/2, col);
	f(a, rank-1, row+w/2, col+w);
}

int main()
{
	char a[N][N];
	int i,j;
	for(i=0;i<N;i++)
	for(j=0;j<N;j++) a[i][j] = ' ';
	
	f(a,6,0,0);
	
	for(i=0; i<N; i++){
		for(j=0; j<N; j++) printf("%c",a[i][j]);
		printf("\n");
	}
	
	return 0;
}

请仔细分析程序逻辑,填写缺失代码部分。

  • 题目分析
    按照第四题说的做题套路,这里就是使用递归的猜想,对于这里,我们要修改的就是递归函数里后面两个参数里的三个变量col,row,w,这里我使用的方法是修改参数,然后通过结果发现,col控制列,col控制行,w控制空格数,所以最后调调答案就出来了,这种递归题在蓝桥杯中通过边调试边看结果最快
  • 题目代码
	f(a, rank-1, row, col+w/2);

第六题:奇怪的分式

  • 题目描述
    上小学的时候,小明经常自己发明新算法。一次,老师出的题目是:1/4 乘以 8/5 小明居然把分子拼接在一起,分母拼接在一起,答案是:18/45 (参见图1.png)老师刚想批评他,转念一想,这个答案凑巧也对啊,真是见鬼! 对于分子、分母都是 1~9 中的一位数的情况,还有哪些算式可以这样计算呢? 请写出所有不同算式的个数(包括题中举例的)。显然,交换分子分母后,例如:4/1 乘以 5/8 是满足要求的,这算做不同的算式。但对于分子分母相同的情况,2/2 乘以 3/3 这样的类型太多了,不在计数之列!

注意:答案是个整数(考虑对称性,肯定是偶数)。请通过浏览器提交。不要书写多余的内容。
在这里插入图片描述

  • 题目分析
    对于此题用的方法就是我们的暴力,4层循环,需注意的是:
    1.分子分母要用不同的数
    2.整数相除用浮点数
    3.浮点数比价大小用fabs函数
  • 题目代码
#include<bits/stdc++.h>
using namespace std;
int main()
{
    //a/b × c/d = (a*10+c)/(b*10+d)
    float a,b,c,d;
    int t=0;
    for(a=1; a<=9; a++)
        for(b=1; b<=9; b++)
            for(c=1; c<=9; c++)
                for(d=1; d<=9; d++)
                {
                    if(a==b||c==d)continue;
                    float num1 = (a*c)/(b*d);
                    float num2 = (a*10+c)/(b*10+d);
                    if(num1==num2)
                    {
                        t++;
                    }
                }
    cout<<t<<endl;
}

第七题:六角填数

  • 题目描述
    如图【1.png】所示六角形中,填入1~12的数字。
    使得每条直线上的数字之和都相同。
    图中,已经替你填好了3个数字,请你计算星号位置所代表的数字是多少?
    在这里插入图片描述
  • 题目分析
  • 题目代码

第八题:蚂蚁感冒

  • 题目描述
    长100厘米的细长直杆子上有n只蚂蚁。它们的头有的朝左,有的朝右。 每只蚂蚁都只能沿着杆子向前爬,速度是1厘米/秒。当两只蚂蚁碰面时,它们会同时掉头往相反的方向爬行。这些蚂蚁中,有1只蚂蚁感冒了。并且在和其它蚂蚁碰面时,会把感冒传染给碰到的蚂蚁。请你计算,当所有蚂蚁都爬离杆子时,有多少只蚂蚁患上了感冒。
    【数据格式】
    第一行输入一个整数n (1 < n < 50), 表示蚂蚁的总数。
    接着的一行是n个用空格分开的整数 Xi (-100 < Xi < 100), Xi的绝对值,表示蚂蚁离开杆子左边端点的距离。正值表示头朝右,负值表示头朝左,数据中不会出现0值,也不会出现两只蚂蚁占用同一位置。其中,第一个数据代表的蚂蚁感冒了。
    要求输出1个整数,表示最后感冒蚂蚁的数目。
    例如,输入:
    3
    5 -2 8
    程序应输出:
    1
    再例如,输入:
    5
    -10 8 -20 12 25
    程序应输出:
    3
    资源约定:
    峰值内存消耗 < 256M
    CPU消耗 < 1000ms

  • 题目分析

  • 题目代码

第九题:地宫取宝

  • 题目描述
    X 国王有一个地宫宝库。是 n x m 个格子的矩阵。每个格子放一件宝贝。每个宝贝贴着价值标签。地宫的入口在左上角,出口在右下角。小明被带到地宫的入口,国王要求他只能向右或向下行走。走过某个格子时,如果那个格子中的宝贝价值比小明手中任意宝贝价值都大,小明就可以拿起它(当然,也可以不拿)。当小明走到出口时,如果他手中的宝贝恰好是k件,则这些宝贝就可以送给小明。请你帮小明算一算,在给定的局面下,他有多少种不同的行动方案能获得这k件宝贝。
    【数据格式】
    输入一行3个整数,用空格分开:n m k (1<=n,m<=50, 1<=k<=12)接下来有 n 行数据,每行有 m 个整数 Ci (0<=Ci<=12)代表这个格子上的宝物的价值要求输出一个整数,表示正好取k个宝贝的行动方案数。该数字可能很大,输出它对 1000000007 取模的结果。
    例如,输入:
    2 2 2
    1 2
    2 1
    程序应该输出:
    2
    再例如,输入:
    2 3 2
    1 2 3
    2 1 5
    程序应该输出:
    14
    资源约定:
    峰值内存消耗(含虚拟机) < 256M
    CPU消耗 < 2000ms

  • 题目分析

  • 题目代码

第十题:小朋友排队

  • 题目描述
    n 个小朋友站成一排。现在要把他们按身高从低到高的顺序排列,但是每次只能交换位置相邻的两个小朋友。每个小朋友都有一个不高兴的程度。开始的时候,所有小朋友的不高兴程度都是0。如果某个小朋友第一次被要求交换,则他的不高兴程度增加1,如果第二次要求他交换,则他的不高兴程度增加2(即不高兴程度为3),依次类推。当要求某个小朋友第k次交换时,他的不高兴程度增加k。请问,要让所有小朋友按从低到高排队,他们的不高兴程度之和最小是多少。如果有两个小朋友身高一样,则他们谁站在谁前面是没有关系的。
    【数据格式】
    输入的第一行包含一个整数n,表示小朋友的个数。第二行包含 n 个整数 H1 H2 … Hn,分别表示每个小朋友的身高。输出一行,包含一个整数,表示小朋友的不高兴程度和的最小值。
    例如,输入:
    3
    3 2 1
    程序应该输出:
    9
    【样例说明】
    首先交换身高为3和2的小朋友,再交换身高为3和1的小朋友,再交换身高为2和1的小朋友,每个小朋友的不高兴程度都是3,总和为9。
    【数据规模与约定】
    对于10%的数据, 1<=n<=10;
    对于30%的数据, 1<=n<=1000;
    对于50%的数据, 1<=n<=10000;
    对于100%的数据,1<=n<=100000,0<=Hi<=1000000。
  • 题目分析
  • 题目代码
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值