第一题:啤酒和饮料
- 题目描述
啤酒每罐2.3元,饮料每罐1.9元。小明买了若干啤酒和饮料,一共花了82.3元。我们还知道他买的啤酒比饮料的数量少,请你计算他买了几罐啤酒。 - 题目分析
简单的循环暴力,两层循环就可 - 题目代码
#include<bits/stdc++.h>
using namespace std;
int main()
{
double i,j,n;
for(i=1;i<500;i++)
for(j=1;j<500;j++)
{
if(2.3*i+1.9*j==82.3)
{
if(i<j)
{
cout<<i<<endl;
cout<<j<<endl;
break;
}
}
}
}
第二题:切面条
- 题目描述
一根高筋拉面,中间切一刀,可以得到2根面条。
如果先对折1次,中间切一刀,可以得到3根面条。
如果连续对折2次,中间切一刀,可以得到5根面条。
那么,连续对折10次,中间切一刀,会得到多少面条呢? - 题目分析
2^10+1=1025
这里可以从前3个得到规律,如果每个线的拐弯处没有连接,则会有2的N次条,正因为有对折处,所以就会减少条数。我们可以看出每次对折处增加次数为等比数列,所以最终的条数无对折的情况下减去对折的数。 - 题目代码
#include<iostream>
#include<cmath>
using namespace std;
int main()
{
//计算对折拐弯处数目(等比公式推导)
int a = pow(2,10)-1;
//无对折情况下数目
int b = pow(2,11);
//最后面条数目
cout << b-a;
return 0;
}
第三题:李白打酒
-
题目描述
话说大诗人李白,一生好饮。幸好他从不开车。
一天,他提着酒壶,从家里出来,酒壶中有酒2斗。他边走边唱:
无事街上走,提壶去打酒。
逢店加一倍,遇花喝一斗。
这一路上,他一共遇到店5次,遇到花10次,已知最后一次遇到的是花,他正好把酒喝光了。
请你计算李白遇到店和花的次序,可以把遇店记为a,遇花记为b。则:babaabbabbabbbb 就是合理的次序。像这样的答案一共有多少呢?请你计算出所有可能方案的个数(包含题目给出的)。 -
题目分析
递归主要找出 临界值
进入下一步的每个变量的变化 -
题目代码
#include<bits/stdc++.h>
using namespace std;
char a[20];
int t=0;
void f(int i,int store,int flower,int wine)
{
if(store>5||flower>10)return;
else if(store==5&&flower==10&&wine==0&&a[14]=='b')
{
t++;
for(int i=0;i<=14;i++)
cout<<a[i];
cout<<endl;
}
a[i]='a';
f(i+1,store+1,flower,wine*2);
a[i]='b';
f(i+1,store,flower+1,wine-1);
}
int main()
{
f(0,0,0,2);
cout<<t<<endl;
return 0;
}
#include<bits/stdc++.h>
using namespace std;
int num = 0;
void f(int flower,int store,int sum) //flower记录遇到花的次数,store记录遇到店的次数,
// sum为当前酒的总数
{
if(flower>9 || store>5) // 判断递归的出口对于递归来说十分关键
return;
if(flower==9 && store==5&&sum==1) //由题意最后一次肯定为花,因此在倒数第二次时的情况为
{
num++;//经过9次花,5次店,并且剩下了一斗酒sum=1
}
f(flower+1,store,sum-1); //遇花喝一斗,即sum-1
f(flower,store+1,sum*2); //遇店多一倍,即sum*2
}
int main ()
{
f(0,0,2); //初次递归的初始条件
printf("%d",num);
return 0;
}
第四题:史丰收速算
- 题目描述
史丰收速算法的革命性贡献是:从高位算起,预测进位。不需要九九表,彻底颠覆了传统手算!
速算的核心基础是:1位数乘以多位数的乘法。
其中,乘以7是最复杂的,就以它为例。
因为,1/7 是个循环小数:0.142857…,如果多位数超过 142857…,就要进1
同理,2/7, 3/7, … 6/7 也都是类似的循环小数,多位数超过 n/7,就要进n
下面的程序模拟了史丰收速算法中乘以7的运算过程。
乘以 7 的个位规律是:偶数乘以2,奇数乘以2再加5,都只取个位。
乘以 7 的进位规律是:
满 142857… 进1,
满 285714… 进2,
满 428571… 进3,
满 571428… 进4,
满 714285… 进5,
满 857142… 进6
请分析程序流程,填写划线部分缺少的代码。
//计算个位
int ge_wei(int a)
{
if(a % 2 == 0)
return (a * 2) % 10;
else
return (a * 2 + 5) % 10;
}
//计算进位
int jin_wei(char* p)
{
char* level[] = {
"142857",
"285714",
"428571",
"571428",
"714285",
"857142"
};
char buf[7];
buf[6] = '\0';
strncpy(buf,p,6);
int i;
for(i=5; i>=0; i--){
int r = strcmp(level[i], buf);
if(r<0) return i+1;
while(r==0){
p += 6;
strncpy(buf,p,6);
r = strcmp(level[i], buf);
if(r<0) return i+1;
______________________________; //填空
}
}
return 0;
}
//多位数乘以7
void f(char* s)
{
int head = jin_wei(s);
if(head > 0) printf("%d", head);
char* p = s;
while(*p){
int a = (*p-'0');
int x = (ge_wei(a) + jin_wei(p+1)) % 10;
printf("%d",x);
p++;
}
printf("\n");
}
int main()
{
f("428571428571");
f("34553834937543");
return 0;
}
- 题目分析
对于这种代码填空题的心得就是要看填空的上下文。
常见的就是如果改填空处上下方有递归,则此处大概率是递归的调用,或者上下是一个if判断预期,则填空处就是判断的另一张情况,此处就是第二种。
具体解析可看此处: 解析. - 题目代码
if(r>0) return i;
第五题:打印图形
- 题目描述
小明在X星球的城堡中发现了如下图形和文字:
rank=3
*
* *
* *
* * * *
rank=5
*
* *
* *
* * * *
* *
* * * *
* * * *
* * * * * * * *
* *
* * * *
* * * *
* * * * * * * *
* * * *
* * * * * * * *
* * * * * * * *
* * * * * * * * * * * * * * * *
ran=6
*
* *
* *
* * * *
* *
* * * *
* * * *
* * * * * * * *
* *
* * * *
* * * *
* * * * * * * *
* * * *
* * * * * * * *
* * * * * * * *
* * * * * * * * * * * * * * * *
* *
* * * *
* * * *
* * * * * * * *
* * * *
* * * * * * * *
* * * * * * * *
* * * * * * * * * * * * * * * *
* * * *
* * * * * * * *
* * * * * * * *
* * * * * * * * * * * * * * * *
* * * * * * * *
* * * * * * * * * * * * * * * *
* * * * * * * * * * * * * * * *
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
小明开动脑筋,编写了如下的程序,实现该图形的打印。
#define N 70
void f(char a[][N], int rank, int row, int col)
{
if(rank==1){
a[row][col] = '*';
return;
}
int w = 1;
int i;
for(i=0; i<rank-1; i++) w *= 2;
____________________________________________;
f(a, rank-1, row+w/2, col);
f(a, rank-1, row+w/2, col+w);
}
int main()
{
char a[N][N];
int i,j;
for(i=0;i<N;i++)
for(j=0;j<N;j++) a[i][j] = ' ';
f(a,6,0,0);
for(i=0; i<N; i++){
for(j=0; j<N; j++) printf("%c",a[i][j]);
printf("\n");
}
return 0;
}
请仔细分析程序逻辑,填写缺失代码部分。
- 题目分析
按照第四题说的做题套路,这里就是使用递归的猜想,对于这里,我们要修改的就是递归函数里后面两个参数里的三个变量col,row,w,这里我使用的方法是修改参数,然后通过结果发现,col控制列,col控制行,w控制空格数,所以最后调调答案就出来了,这种递归题在蓝桥杯中通过边调试边看结果最快 - 题目代码
f(a, rank-1, row, col+w/2);
第六题:奇怪的分式
- 题目描述
上小学的时候,小明经常自己发明新算法。一次,老师出的题目是:1/4 乘以 8/5 小明居然把分子拼接在一起,分母拼接在一起,答案是:18/45 (参见图1.png)老师刚想批评他,转念一想,这个答案凑巧也对啊,真是见鬼! 对于分子、分母都是 1~9 中的一位数的情况,还有哪些算式可以这样计算呢? 请写出所有不同算式的个数(包括题中举例的)。显然,交换分子分母后,例如:4/1 乘以 5/8 是满足要求的,这算做不同的算式。但对于分子分母相同的情况,2/2 乘以 3/3 这样的类型太多了,不在计数之列!
注意:答案是个整数(考虑对称性,肯定是偶数)。请通过浏览器提交。不要书写多余的内容。
- 题目分析
对于此题用的方法就是我们的暴力,4层循环,需注意的是:
1.分子分母要用不同的数
2.整数相除用浮点数
3.浮点数比价大小用fabs函数 - 题目代码
#include<bits/stdc++.h>
using namespace std;
int main()
{
//a/b × c/d = (a*10+c)/(b*10+d)
float a,b,c,d;
int t=0;
for(a=1; a<=9; a++)
for(b=1; b<=9; b++)
for(c=1; c<=9; c++)
for(d=1; d<=9; d++)
{
if(a==b||c==d)continue;
float num1 = (a*c)/(b*d);
float num2 = (a*10+c)/(b*10+d);
if(num1==num2)
{
t++;
}
}
cout<<t<<endl;
}
第七题:六角填数
- 题目描述
如图【1.png】所示六角形中,填入1~12的数字。
使得每条直线上的数字之和都相同。
图中,已经替你填好了3个数字,请你计算星号位置所代表的数字是多少?
- 题目分析
- 题目代码
第八题:蚂蚁感冒
-
题目描述
长100厘米的细长直杆子上有n只蚂蚁。它们的头有的朝左,有的朝右。 每只蚂蚁都只能沿着杆子向前爬,速度是1厘米/秒。当两只蚂蚁碰面时,它们会同时掉头往相反的方向爬行。这些蚂蚁中,有1只蚂蚁感冒了。并且在和其它蚂蚁碰面时,会把感冒传染给碰到的蚂蚁。请你计算,当所有蚂蚁都爬离杆子时,有多少只蚂蚁患上了感冒。
【数据格式】
第一行输入一个整数n (1 < n < 50), 表示蚂蚁的总数。
接着的一行是n个用空格分开的整数 Xi (-100 < Xi < 100), Xi的绝对值,表示蚂蚁离开杆子左边端点的距离。正值表示头朝右,负值表示头朝左,数据中不会出现0值,也不会出现两只蚂蚁占用同一位置。其中,第一个数据代表的蚂蚁感冒了。
要求输出1个整数,表示最后感冒蚂蚁的数目。
例如,输入:
3
5 -2 8
程序应输出:
1
再例如,输入:
5
-10 8 -20 12 25
程序应输出:
3
资源约定:
峰值内存消耗 < 256M
CPU消耗 < 1000ms -
题目分析
-
题目代码
第九题:地宫取宝
-
题目描述
X 国王有一个地宫宝库。是 n x m 个格子的矩阵。每个格子放一件宝贝。每个宝贝贴着价值标签。地宫的入口在左上角,出口在右下角。小明被带到地宫的入口,国王要求他只能向右或向下行走。走过某个格子时,如果那个格子中的宝贝价值比小明手中任意宝贝价值都大,小明就可以拿起它(当然,也可以不拿)。当小明走到出口时,如果他手中的宝贝恰好是k件,则这些宝贝就可以送给小明。请你帮小明算一算,在给定的局面下,他有多少种不同的行动方案能获得这k件宝贝。
【数据格式】
输入一行3个整数,用空格分开:n m k (1<=n,m<=50, 1<=k<=12)接下来有 n 行数据,每行有 m 个整数 Ci (0<=Ci<=12)代表这个格子上的宝物的价值要求输出一个整数,表示正好取k个宝贝的行动方案数。该数字可能很大,输出它对 1000000007 取模的结果。
例如,输入:
2 2 2
1 2
2 1
程序应该输出:
2
再例如,输入:
2 3 2
1 2 3
2 1 5
程序应该输出:
14
资源约定:
峰值内存消耗(含虚拟机) < 256M
CPU消耗 < 2000ms -
题目分析
-
题目代码
第十题:小朋友排队
- 题目描述
n 个小朋友站成一排。现在要把他们按身高从低到高的顺序排列,但是每次只能交换位置相邻的两个小朋友。每个小朋友都有一个不高兴的程度。开始的时候,所有小朋友的不高兴程度都是0。如果某个小朋友第一次被要求交换,则他的不高兴程度增加1,如果第二次要求他交换,则他的不高兴程度增加2(即不高兴程度为3),依次类推。当要求某个小朋友第k次交换时,他的不高兴程度增加k。请问,要让所有小朋友按从低到高排队,他们的不高兴程度之和最小是多少。如果有两个小朋友身高一样,则他们谁站在谁前面是没有关系的。
【数据格式】
输入的第一行包含一个整数n,表示小朋友的个数。第二行包含 n 个整数 H1 H2 … Hn,分别表示每个小朋友的身高。输出一行,包含一个整数,表示小朋友的不高兴程度和的最小值。
例如,输入:
3
3 2 1
程序应该输出:
9
【样例说明】
首先交换身高为3和2的小朋友,再交换身高为3和1的小朋友,再交换身高为2和1的小朋友,每个小朋友的不高兴程度都是3,总和为9。
【数据规模与约定】
对于10%的数据, 1<=n<=10;
对于30%的数据, 1<=n<=1000;
对于50%的数据, 1<=n<=10000;
对于100%的数据,1<=n<=100000,0<=Hi<=1000000。 - 题目分析
- 题目代码