大数据学习之路18-线段重叠次数topN计算,自定义GroupingComparator

在大数据处理中,原始方法在计算线段重叠次数最多TopN时存在效率问题,因为即使达到条件仍会继续执行reduce。为优化此问题,可以使用自定义的GroupingComparator,使相同key的数据被worker视为一组,从而减少reduce调用次数。本文介绍如何实现这个优化,包括继承GroupingComparator并重写compare方法,以及调整reduce代码以提高效率。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在上一节中我们求重叠次数最多的前三个的时候我们使用的是变量,当等于三的时候就return,其实这样做有缺点,虽然return了可是后面的reduce还是会照样执行。这样会影响执行效率。接下来我们优化一下。

优化思路:想办法让worker将那一堆数据看成一组,这样的话worker就会将那一堆数据只调用一次reduce

这样就涉及到一个知识点,worker是如何让key相同的为一组的?我们要知道我们的数据本质上是在文件中的。文件中的内容其实是序列化的结果。这样就有两种比较是否想通过的方法:

第一种:直接比较文件中序列化的字节

第二种:读出字节并反序列化变成java对象再比较

那么如何比较两个对象是否相等呢?这里它做的没有这么死,它提供了一种方法,这个方法给你两个对象,然后由你来告诉他这两个对象是否相等。

worker是通过下面的接口实现类中的方法来判断两个key是否相等,以便于是否看成同一组:

WritableComparator类:

        compare(key1,key2){

           return 0; //这里如果return 0,那么任何两个对象都会相等。

         }

 

所以如果想实现我们的功能,我们可以继承这个父类,然后告诉worker别用他默认的方法了,用我们自己重写的方法。

compare(WritableComparable a, WritableComparable b)我们应该用这个方法,这个方法会帮我们从这个文件反序列化成对象。但是我们用这个

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

未来@音律

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值