LeetCode 5. 最长回文子串

本文介绍了如何使用中心拓展法和动态规划解决LeetCode 5.最长回文子串问题,详细讲解了两种方法的实现过程,并对比了它们的时间复杂度和空间复杂度。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

5. 最长回文子串

   

给你一个字符串 s,找到 s 中最长的回文子串。

如果字符串的反序与原始字符串相同,则该字符串称为回文字符串。

示例 1:

输入:s = "babad"
输出:"bab"
解释:"aba" 同样是符合题意的答案。

示例 2:

输入:s = "cbbd"
输出:"bb"

提示:

  • 1 <= s.length <= 1000
  • s 仅由数字和英文字母组成

思路:

方法1 中心拓展

参考 LeetCode大佬题解

此题可以在 [647. 回文子串] 题的基础上,加上对最长回文子串的逻辑判断。

因为回文串是中心对称的,我们可以先枚举子串的中心,然后**从中心处向两边探测**,直到发现两端字符不相等或者到达字符串边缘。

s长度为 奇数,中心是单个字符,以 s[i] 为中心向两边扩展
s长度为 偶数,中心是两个字符,以 s[i]、s[i+1] 为中心向两边扩展

方法2 动态规划

参考视频:史上最燃算法刷题!Leetcode 5. 最长回文子串_哔哩哔哩_bilibili

找出状态转移方程如下:

  • 对于 j - i > 2 的情况:dp[i][j]的状态转移方程可能取决于dp[i+1][j-1],所以不能使用常规从前往后的二位数组遍历方式;可以将i从后往前遍历将j在i+1的基础上向后遍历。也就是先获取后面dp[i+1][j-1]的状态值,再进而推导出前面dp[i][j]的状态值
  • 注意:单独字符本身也属于最小的回文子串,比如单独的字符:a

时间复杂度:O(N²),其中 N 是字符串的长度,动态规划的状态总数为 O(N²)

空间复杂度:O(N²),需要额外申请二维数组dp[i][j]来存储每个状态值

// 中心拓展法(个人认为以下代码相对于动态规划来讲,更加清晰明了):
// 此题可以在 [647. 回文子串] 题的基础上,加上对最长回文子串的逻辑判断
// [647. 回文子串] 参考题解:https://leetcode.cn/problems/palindromic-substrings/solutions/369611/manacher-zhi-hui-qiu-zui-chang-hui-wen-zi-chuan-ta/
func longestPalindrome(s string) string {
    sLength, res := len(s), ""
	
    for i := 0; i < sLength; i++ {
    	// s长度为奇数,中心是单个字符,以s[i]为中心向两边扩展
        l, r := i, i 
        for l >= 0 && r < sLength && s[l] == s[r] {
        	// 通过比较找出更长的最长回文子串
            tmpLength := r - l + 1
            if tmpLength > len(res) {
                res = s[l:r+1]
            }

            l--
            r++
        }

		// s长度为偶数,中心是两个字符,以s[i]、s[i+1]为中心向两边扩展
        l, r = i, i + 1 
        for l >= 0 && r < sLength && s[l] == s[r] {
        	// 通过比较找出更长的最长回文子串
            tmpLength := r - l + 1
            if tmpLength > len(res) {
                res = s[l:r+1]
            }

            l-- 
            r++
        }
    }
    return res
}

// 动态规划1:参考b站视频:https://www.bilibili.com/video/BV1dN4y1g7p9?spm_id_from=333.337.search-card.all.click&vd_source=2c268e25ffa1022b703ae0349e3659e4
// arr[i][j]的状态转移方程可能取决于arr[i+1][j-1],所以不能使用常规的二位数组遍历方式;
// 可以将i从后往前遍历,将j在i+1的基础上向后遍历;
// 也就是先从后向前获取arr[i+1][j-1]的状态值,再进而获取arr[i][j]的状态值。
func longestPalindrome(s string) string {
	length := len(s)
	// if length <= 1 {
	//     return s
	// }

	// 题目要求:1 <= s.length <= 1000,所以最小子串为单独字符本身
	var res string = s[0:1]

	// 初始化二维数组
	dp := make([][]bool, length)
	for i := 0; i < length; i++ {
		dp[i] = make([]bool, length)
	}

	for i := length - 1; i >= 0; i-- {
		for j := i + 1; j < length; j++ {
			if i == j {
				dp[i][j] = true
			} else if j-i <= 2 { // s[i] == s[j] 并且i、j间距小于等于2的子串都为true,比如aba(2-0=2) aa(1-0=1) a(0-0=0)等于0也就是单独字符本身
				dp[i][j] = s[i] == s[j]
			} else {
				dp[i][j] = s[i] == s[j] && dp[i+1][j-1]
			}

			if dp[i][j] && j-i+1 >= len(res) {
				res = s[i : i+j-i+1]
			}
		}
	}

	return res
}

// 动态规划2:参考b站视频:https://www.bilibili.com/video/BV1AA411B7XV?spm_id_from=333.337.search-card.all.click&vd_source=2c268e25ffa1022b703ae0349e3659e4
func longestPalindrome(s string) string {
    length := len(s)
    if length <= 1 {
        return s
    }

    // 初始化二维数组并将对角线dp[i][i]为true。即i=j时,i开始j结尾的字符串
    dp := make([][]bool, length)
    for i := 0; i < length; i++ {
        dp[i] = make([]bool, length)
    }

    for i := 0; i < length; i++ {
        dp[i][i] = true
    }

    max, start := 1, 0 // 注意:max初始为1,一个字符本身也算是回文子串
    // todo: i和j循环位置调换
    for j := 1; j < length; j++ {
        for i := 0; i < length-1 && i < j; i++ {
            if s[i] != s[j] { // asc码值比较
                dp[i][j] = false
            } else {
                if j - i <= 2 { // s[i] == s[j] 并且i、j间距小于等于2的子串都为true,比如aba(2-0=2) aa(1-0=1) a(0-0=0)等于0也就是单独字符本身
                    dp[i][j] = true
                } else {
                    dp[i][j] = dp[i+1][j-1] // ???
                }
            }

            if dp[i][j] && j-i+1 > max {
                max = j-i+1
                start = i
            }
        }
    }

    return s[start:start+max]
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值