给你一个字符串
s
,找到s
中最长的回文子串。如果字符串的反序与原始字符串相同,则该字符串称为回文字符串。
示例 1:
输入:s = "babad" 输出:"bab" 解释:"aba" 同样是符合题意的答案。示例 2:
输入:s = "cbbd" 输出:"bb"提示:
1 <= s.length <= 1000
s
仅由数字和英文字母组成
思路:
方法1 中心拓展
参考 LeetCode大佬题解
此题可以在 [647. 回文子串] 题的基础上,加上对最长回文子串的逻辑判断。
因为回文串是中心对称的,我们可以先枚举子串的中心,然后**从中心处向两边探测**,直到发现两端字符不相等或者到达字符串边缘。
s长度为 奇数,中心是单个字符,以 s[i] 为中心向两边扩展
s长度为 偶数,中心是两个字符,以 s[i]、s[i+1] 为中心向两边扩展
方法2 动态规划
参考视频:史上最燃算法刷题!Leetcode 5. 最长回文子串_哔哩哔哩_bilibili
找出状态转移方程如下:
- 对于 j - i > 2 的情况:dp[i][j]的状态转移方程可能取决于dp[i+1][j-1],所以不能使用常规从前往后的二位数组遍历方式;可以将i从后往前遍历,将j在i+1的基础上向后遍历。也就是先获取后面dp[i+1][j-1]的状态值,再进而推导出前面dp[i][j]的状态值
- 注意:单独字符本身也属于最小的回文子串,比如单独的字符:a
时间复杂度:O(N²),其中 N 是字符串的长度,动态规划的状态总数为 O(N²)
空间复杂度:O(N²),需要额外申请二维数组dp[i][j]来存储每个状态值
// 中心拓展法(个人认为以下代码相对于动态规划来讲,更加清晰明了):
// 此题可以在 [647. 回文子串] 题的基础上,加上对最长回文子串的逻辑判断
// [647. 回文子串] 参考题解:https://leetcode.cn/problems/palindromic-substrings/solutions/369611/manacher-zhi-hui-qiu-zui-chang-hui-wen-zi-chuan-ta/
func longestPalindrome(s string) string {
sLength, res := len(s), ""
for i := 0; i < sLength; i++ {
// s长度为奇数,中心是单个字符,以s[i]为中心向两边扩展
l, r := i, i
for l >= 0 && r < sLength && s[l] == s[r] {
// 通过比较找出更长的最长回文子串
tmpLength := r - l + 1
if tmpLength > len(res) {
res = s[l:r+1]
}
l--
r++
}
// s长度为偶数,中心是两个字符,以s[i]、s[i+1]为中心向两边扩展
l, r = i, i + 1
for l >= 0 && r < sLength && s[l] == s[r] {
// 通过比较找出更长的最长回文子串
tmpLength := r - l + 1
if tmpLength > len(res) {
res = s[l:r+1]
}
l--
r++
}
}
return res
}
// 动态规划1:参考b站视频:https://www.bilibili.com/video/BV1dN4y1g7p9?spm_id_from=333.337.search-card.all.click&vd_source=2c268e25ffa1022b703ae0349e3659e4
// arr[i][j]的状态转移方程可能取决于arr[i+1][j-1],所以不能使用常规的二位数组遍历方式;
// 可以将i从后往前遍历,将j在i+1的基础上向后遍历;
// 也就是先从后向前获取arr[i+1][j-1]的状态值,再进而获取arr[i][j]的状态值。
func longestPalindrome(s string) string {
length := len(s)
// if length <= 1 {
// return s
// }
// 题目要求:1 <= s.length <= 1000,所以最小子串为单独字符本身
var res string = s[0:1]
// 初始化二维数组
dp := make([][]bool, length)
for i := 0; i < length; i++ {
dp[i] = make([]bool, length)
}
for i := length - 1; i >= 0; i-- {
for j := i + 1; j < length; j++ {
if i == j {
dp[i][j] = true
} else if j-i <= 2 { // s[i] == s[j] 并且i、j间距小于等于2的子串都为true,比如aba(2-0=2) aa(1-0=1) a(0-0=0)等于0也就是单独字符本身
dp[i][j] = s[i] == s[j]
} else {
dp[i][j] = s[i] == s[j] && dp[i+1][j-1]
}
if dp[i][j] && j-i+1 >= len(res) {
res = s[i : i+j-i+1]
}
}
}
return res
}
// 动态规划2:参考b站视频:https://www.bilibili.com/video/BV1AA411B7XV?spm_id_from=333.337.search-card.all.click&vd_source=2c268e25ffa1022b703ae0349e3659e4
func longestPalindrome(s string) string {
length := len(s)
if length <= 1 {
return s
}
// 初始化二维数组并将对角线dp[i][i]为true。即i=j时,i开始j结尾的字符串
dp := make([][]bool, length)
for i := 0; i < length; i++ {
dp[i] = make([]bool, length)
}
for i := 0; i < length; i++ {
dp[i][i] = true
}
max, start := 1, 0 // 注意:max初始为1,一个字符本身也算是回文子串
// todo: i和j循环位置调换
for j := 1; j < length; j++ {
for i := 0; i < length-1 && i < j; i++ {
if s[i] != s[j] { // asc码值比较
dp[i][j] = false
} else {
if j - i <= 2 { // s[i] == s[j] 并且i、j间距小于等于2的子串都为true,比如aba(2-0=2) aa(1-0=1) a(0-0=0)等于0也就是单独字符本身
dp[i][j] = true
} else {
dp[i][j] = dp[i+1][j-1] // ???
}
}
if dp[i][j] && j-i+1 > max {
max = j-i+1
start = i
}
}
}
return s[start:start+max]
}