Chapter 1:什么是强化学习?
强化学习的具体场景:决策代理人agent与所在环境environment互动,决策人想要在不确定性环境下实现目标,决策人的行为会影响未来的环境状态,从而影响决策人以后可以采取的行动和机会。正确的选择需要考虑到行动的延迟后果,因此可能需要具有预见性。
但是决策人行动的效果无法完全预测,因此,必须经常监控其环境并做出适当的反应。决策人可以使用其经验来改善其决策。
1 RL的要素
除了agent和environment之外,强化学习系统还有四个主要子元素:策略,奖励信号,价值函数,以及可选的环境模型。
- 策略:agent在给定时间的行为方式。 简单来说,就是从感知的环境状态到在这些状态下要采取的行动的映射。
- 奖励信号(reward signal):强化学习问题的目标。 通常,奖励信号是环境状态和所采取的动作的随机函数。
- 价值函数(value function):奖励信号表示短期的直接好处,而价值函数则表示长期利益。
- 环境模型:用来模仿环境的行为,并可以推断出环境的行为方式。例如,给定状态和动作,模型可以预测结果的下一状态和下一个奖励。
强化学习是一种理解和自动化以目标导向的学习和决策的计算方法。它与其他计算方法的区别在于它强调代理人通过与环境的直接交互来学习,而不需要示例性监督或完整的环境模型。
强化学习使用马尔可夫决策过程的正式框架来定义代理人与其环境之间在状态、行为和奖励方面的交互。
价值函数对于策略空间中的有效搜索非常重要,价值函数将强化学习方法与直接在政策空间中搜索的进化方法区分开来。
2 本书的内容
Part I: Tabular Solution Methods
该部分以最简单的形式描述了强化学习算法的几乎所有核心思想:状态和动作空间足够小,以便将近似值函数表示为数组或表。在这种情况下 ,这些方法通常可以找到最佳的价值函数和最优政策。
该部分包括6个章节
- 老虎机问题
- 有限马尔可夫决策过程中处理的一般问题公式及其主要思想
- 解决有限马尔可夫决策问题方法——动态规划
- 解决有限马尔可夫决策问题方法——蒙特卡洛方法
- 解决有限马尔可夫决策问题方法——时间差分学习
- 蒙特卡洛与时间差分学习结合
- 动态规划与时间差分学习结合
其中,解决有限马尔可夫决策问题的三种方法都各有优劣:动态规划方法在数学上得到了很好的发展,但需要一个完整而准确的环境模型;蒙特卡罗方法不需要模型,并且在概念上很简单,但不适合逐步增量计算;时间差分方法不需要模型,完全是递增的,但分析起来更复杂。
Part II: Approximate Solution Methods
这与本书下一部分中描述的近似方法形成对比,后者只能找到近似解,但作为回报,它可以有效地应用于更大的问题。