Chapter 1:什么是强化学习?

强化学习涉及策略、奖励信号、价值函数和环境模型。它通过与环境的交互学习目标,使用马尔可夫决策过程进行建模。本书第一部分介绍表格解决方案,包括动态规划、蒙特卡洛方法和时间差分学习,适用于状态和动作空间较小的问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >


强化学习的具体场景:决策代理人agent与所在环境environment互动,决策人想要在不确定性环境下实现目标,决策人的行为会影响未来的环境状态,从而影响决策人以后可以采取的行动和机会。正确的选择需要考虑到行动的延迟后果,因此可能需要具有预见性。
但是决策人行动的效果无法完全预测,因此,必须经常监控其环境并做出适当的反应。决策人可以使用其经验来改善其决策。

1 RL的要素

除了agent和environment之外,强化学习系统还有四个主要子元素:策略,奖励信号,价值函数,以及可选的环境模型。

  1. 策略:agent在给定时间的行为方式。 简单来说,就是从感知的环境状态到在这些状态下要采取的行动映射
  2. 奖励信号(reward signal):强化学习问题的目标。 通常,奖励信号是环境状态和所采取的动作随机函数
  3. 价值函数(value function):奖励信号表示短期的直接好处,而价值函数则表示长期利益。
  4. 环境模型:用来模仿环境的行为,并可以推断出环境的行为方式。例如,给定状态和动作,模型可以预测结果的下一状态和下一个奖励。

强化学习是一种理解和自动化以目标导向的学习和决策的计算方法。它与其他计算方法的区别在于它强调代理人通过与环境的直接交互来学习,而不需要示例性监督或完整的环境模型。

强化学习使用马尔可夫决策过程的正式框架来定义代理人与其环境之间在状态、行为和奖励方面的交互。

价值函数对于策略空间中的有效搜索非常重要,价值函数将强化学习方法与直接在政策空间中搜索的进化方法区分开来。

2 本书的内容

Part I: Tabular Solution Methods

该部分以最简单的形式描述了强化学习算法的几乎所有核心思想:状态和动作空间足够小,以便将近似值函数表示为数组或表。在这种情况下 ,这些方法通常可以找到最佳的价值函数和最优政策。

该部分包括6个章节

  1. 老虎机问题
  2. 有限马尔可夫决策过程中处理的一般问题公式及其主要思想
  3. 解决有限马尔可夫决策问题方法——动态规划
  4. 解决有限马尔可夫决策问题方法——蒙特卡洛方法
  5. 解决有限马尔可夫决策问题方法——时间差分学习
  6. 蒙特卡洛与时间差分学习结合
  7. 动态规划与时间差分学习结合

其中,解决有限马尔可夫决策问题的三种方法都各有优劣:动态规划方法在数学上得到了很好的发展,但需要一个完整而准确的环境模型;蒙特卡罗方法不需要模型,并且在概念上很简单,但不适合逐步增量计算;时间差分方法不需要模型,完全是递增的,但分析起来更复杂。

Part II: Approximate Solution Methods

这与本书下一部分中描述的近似方法形成对比,后者只能找到近似解,但作为回报,它可以有效地应用于更大的问题。

Part III: Looking Deeper

内容概要:本文介绍了基于Python实现的SSA-GRU(麻雀搜索算法优化门控循环单元)时间序列预测项目。项目旨在通过结合SSA的全局搜索能力和GRU的时序信息处理能力,提升时间序列预测的精度和效率。文中详细描述了项目的背景、目标、挑战及解决方案,涵盖了从数据预处理到模型训练、优化及评估的全流程。SSA用于优化GRU的超参数,如隐藏层单元数、学习率等,以解决传统方法难以捕捉复杂非线性关系的问题。项目还提供了具体的代码示例,包括GRU模型的定义、训练和验证过程,以及SSA的种群初始化、迭代更新策略和适应度评估函数。; 适合人群:具备一定编程基础,特别是对时间序列预测和深度学习有一定了解的研究人员和技术开发者。; 使用场景及目标:①提高时间序列预测的精度和效率,适用于金融市场分析、气象预报、工业设备故障诊断等领域;②解决传统方法难以捕捉复杂非线性关系的问题;③通过自动化参数优化,减少人工干预,提升模型开发效率;④增强模型在不同数据集和未知环境中的泛化能力。; 阅读建议:由于项目涉及深度学习和智能优化算法的结合,建议读者在阅读过程中结合代码示例进行实践,理解SSA和GRU的工作原理及其在时间序列预测中的具体应用。同时,关注数据预处理、模型训练和优化的每个步骤,以确保对整个流程有全面的理解。
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值