动态规划【一】到达目标的最大/最小路径

马上面临秋招,笔者也刷过不少题了,但是动态规划一直是笔者心中的痛点,大厂的笔试中动态规划已成标配,为了圆大厂梦,笔者决定沉下心,认真研究一下动态规划问题,近日看到leetcode一位大佬将动态规划问题划分为五类,私以为很受用,加上一些个人见解,将其写成博客,如有什么错误还请各位看官指正。

1、到达目标的最大/最小路径

1.1 问题描述

通常这类问题都具有如下的描述:

给定一个目标,求到达目标所需要的最大/最小代价、最大/最小和或最大/最小路径数

1.2 解题方法

以路径问题为例,通常在所有可能的路径中,最大/最小路径数都由前一个最大/最小路径加上当前的路径数来得出,我们可以列出状态转移方程:

routes[i] = min(route[i-1],routes[i-2],routes[i-3]...routes[i-k])+cost[i]

通常,解决这类问题的代码都是如下形式:

for(int i=1;i<=target;i++){
	for(int j=0;j<ways.size(),j++){
		dp[i]=min(dp[i],dp[i-ways[j]])+cost[i];
	}
}

1.3 leetcode原题解析

以下是笔者搜集的leetcode此类问题,附上笔者的代码,在这里不讨论代码的优化问题。


746. Min Cost Climbing Stairs (Easy)
/**
*爬阶梯问题,类似于青蛙跳台阶,只不过这里加了一个cost,解题方法还是没变
*每一阶的最小代价都由前一个最小代价决定
*/
//解决方案
class Solution {
    public int minCostClimbingStairs(int[] cost) {
        int [] dp = new int[cost.length+1];
        dp[0] = cost[0];
        dp[1] = cost[1];
        for (int i = 2;i<=cost.length;i++){
                dp[i]=Math.min(dp[i-1],dp[i-2])+(i==cost.length?0:cost[i]);
            }
        return dp[cost.length];
    }
}
64. Minimum Path Sum (Medium)
/**
*求到达目标点的最小和,先假设只有一行或只有一列,那么只有一条路径
*再考虑其他情况,每次只能往右或往下移
*/
//解决方案
class Solution {
    public int minPathSum(int[][] grid) {
       int row = grid.length;
        int col = grid[0].length;
        for (int i =1;i<row;i++){
            grid[i][0]+=grid[i-1][0];
        }
        for (int j =1;j<col;j++){
            grid[0][j]+=grid[0][j-1];
        }
        for (int i =1;i<row;i++){
            for (int j =1;j<col;j++){
                grid[i][j]=Math.min(grid[i-1][j],grid[i][j-1])+grid[i][j];
            }
        }
        return grid[row-1][col-1]; 
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值