P1983 [NOIP 2013 普及组] 车站分级

P1983 [NOIP 2013 普及组] 车站分级

题目背景

NOIP2013 普及组 T4

题目描述

一条单向的铁路线上,依次有编号为 1,2,…,n1, 2, …, n1,2,,n 的 $n $ 个火车站。每个火车站都有一个级别,最低为 111 级。现有若干趟车次在这条线路上行驶,每一趟都满足如下要求:如果这趟车次停靠了火车站 xxx,则始发站、终点站之间所有级别大于等于火车站 xxx 的都必须停靠。
注意:起始站和终点站自然也算作事先已知需要停靠的站点。

例如,下表是 $ 5 $ 趟车次的运行情况。其中,前 $ 4$ 趟车次均满足要求,而第 555 趟车次由于停靠了 333 号火车站(222 级)却未停靠途经的 666 号火车站(亦为 222 级)而不满足要求。

现有 mmm 趟车次的运行情况(全部满足要求),试推算这 $ n$ 个火车站至少分为几个不同的级别。

输入格式

第一行包含 222 个正整数 n,mn, mn,m,用一个空格隔开。

i+1i + 1i+1(1≤i≤m)(1 ≤ i ≤ m)(1im) 中,首先是一个正整数 si (2≤si≤n)s_i\ (2 ≤ s_i ≤ n)si (2sin),表示第 $ i$ 趟车次有 sis_isi 个停靠站;接下来有 $ s_i$ 个正整数,表示所有停靠站的编号,从小到大排列。每两个数之间用一个空格隔开。输入保证所有的车次都满足要求。

输出格式

一个正整数,即 nnn 个火车站最少划分的级别数。

输入输出样例 #1

输入 #1

9 2 
4 1 3 5 6 
3 3 5 6

输出 #1

2

输入输出样例 #2

输入 #2

9 3 
4 1 3 5 6 
3 3 5 6 
3 1 5 9

输出 #2

3

说明/提示

对于 $ 20%$ 的数据,1≤n,m≤101 ≤ n, m ≤ 101n,m10

对于 50%50\%50% 的数据,1≤n,m≤1001 ≤ n, m ≤ 1001n,m100

对于 100%100\%100% 的数据,1≤n,m≤10001 ≤ n, m ≤ 10001n,m1000

对于这题,我们可以将分级问题转化为拓扑问题。站点间按照车辆是否停靠来记录边关系。创建dp数组,dp[i] 表示从起点到站点 i 的路径长度,即最高等级。对于某一条线路上所有停靠了的站点和未停靠的站点,我们令未停靠的站点指向停靠了的站点,表示其等级高低。最后对于建好的图进行拓扑排序,并在排序过程中更新 dp[i] 。最后的答案为dp中的最大值。
建图时由于站点数量过多,可建立虚拟节点辅助建边。

#include<bits/stdc++.h>
using namespace std;

int main(){
    ios_base::sync_with_stdio(false);
    cin.tie(NULL);
    int n, m;
    cin>>n>>m;
    vector<set<int>> g(n + m + 1);
    vector<int> in_(n + m + 1, 0);
    for (int i = 0; i < m; i++) {
        int dummy_ = n + 1 + i;
        int s;
        cin >> s;
        vector<int> stops(s);
        vector<bool> is_stopped(n + 1, false);
        for (int j = 0; j < s; j++) {
            cin >> stops[j];
            is_stopped[stops[j]] = true;
        }
        int start_ = stops.front();
        int end_ = stops.back();
        for (int u = start_; u <= end_; ++u) {
            if (!is_stopped[u]) {
                if(g[u].insert(dummy_).second) {
                    in_[dummy_]++;
                }
            }
        }
        for (int v : stops) {
            if(g[dummy_].insert(v).second) {
                in_[v]++;
            }
        }
    }

    vector<int> dp(n + m + 1, 0);
    priority_queue<int, vector<int>, greater<>> pq;
    for(int i = 1; i <= n + m; i++){
        if(!in_[i]){
            pq.emplace(i);
            if (i <= n) {
                dp[i] = 1;
            }
        }
    }
    while(!pq.empty()){
        int v = pq.top();
        pq.pop();
        for(auto i : g[v]){
            in_[i]--;
            int is_path = (i <= n) ? 1 : 0;
            dp[i] = max(dp[i], dp[v] + is_path);
            if(!in_[i]){
                pq.emplace(i);
            }
        }
    }
    int ans = 0;
    for(int i = 1; i <= n; i++){
        ans = max(ans, dp[i]);
    }
    cout << ans;
    
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值