对比不同开源大语言模型的结构有什么区别?

今天我们来分析和对比一下目前比较流行的几个开源LLM在模型结构上有什么区别,这里挑选的openai的gpt2、开源鼻祖llama、国内的代表qwen2、欧洲的代表号称效果很好的模型mistral、和号称完全开源的模型olmo。这边文章首先从gpt2开始分析,对比gpt2和trainsformer结构的区别,再对比gpt2到llama的演变,最后横向对比LLM时代llama、qwen2、mistral和olmo模型结构的区别。在这里插入图片描述

一、gpt2和transformer结构的区别

都说gpt是把transformer的decoder单独拿出来的结构,这里根据文章中和gpt2的源码对比两个模型结构的区别。
在这里插入图片描述

首先对比模型的整体结构,可以看到gpt2和transformer的decoder部分基本相同,就是每个block将与encoder的交叉注意力去掉了,然后加上了一些dropout的操作。接下来看看每个block内部有没有区别。
在这里插入图片描述

上图是每个block内容的结构对比,可以看到与transformer的decoder相比,gpt2的每个block将归一化的位置进行了修改。之前是attention和mlp后面进行归一化,gpt2是在attention和mlp前面进行了归一化处理。这里一个理由是:“同一设置之下,Pre Norm结构往往更容易训练,但最终效果通常不如Post Norm”(https

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值