
深度学习从0-1
文章平均质量分 76
全栈开发 PAMI
深度学习领域研究者,全栈开发工程师
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
深度学习项目之RT-DETR训练自己数据集
是百度和视觉学界联合提出的一种端到端实时目标检测方法,是DETR 系列的加速优化版。它解决了原始DETR(2020)推理慢、收敛慢的问题,让 Transformer-based 检测器能在实时速率下工作,同时保持高精度。虽然RT-DETR比DETR精度更高,FPS更高,但是参数量依旧很大,普通显卡不够训练。未来考虑轻量化改进以及图像压缩等操作。原创 2025-06-04 21:37:50 · 1518 阅读 · 0 评论 -
深度学习常见模块实现001
常见模块实现原创 2025-04-16 19:40:43 · 302 阅读 · 0 评论 -
pytorch基础语法001
概述- PyTorch是一个开源的深度学习框架,由Facebook的人工智能研究团队(FAIR)开发。它主要用于自然语言处理、计算机视觉等众多深度学习领域的模型开发与训练,是当前深度学习领域最受欢迎的工具之一。主要特点动态计算图- 与一些其他深度学习框架不同,PyTorch采用动态计算图。这意味着计算图是在运行时构建的,而不是像静态计算图那样在编译时就固定。例如,在一个简单的神经网络训练过程中,每次前向传播时,计算图可以根据输入数据的形状、操作顺序等灵活变化。原创 2024-12-29 10:54:19 · 988 阅读 · 0 评论 -
卷积与反卷积
卷积:对图像矩阵进行扫描,寻找到图像的特征信息以及轮廓,纹理以及进一步的语义信息。**反卷积:**对卷积后的图像进行反向操作,做逆向操作,还原图像到之前的状态。所有的逻辑运算,均需要我们一步步去推导,否则学完一遍,还是啥都不会,加油,人工智能小伙伴。卷积。原创 2024-12-05 15:37:12 · 319 阅读 · 0 评论 -
深度学习之稠密连接网络
DenseNet原创 2024-10-13 21:40:26 · 1046 阅读 · 0 评论 -
241013深度学习之GoogleLeNet
深度学习之并行连接网络GoogleLeNet原创 2024-10-13 19:15:23 · 1051 阅读 · 0 评论 -
深度学习之卷积CONV2D
卷积原创 2024-10-10 12:20:15 · 618 阅读 · 0 评论 -
241009深度学习之NIN
NIN网络原创 2024-10-09 16:59:45 · 744 阅读 · 0 评论 -
241007深度学习之LeNet
LeNet原创 2024-10-07 21:37:56 · 1146 阅读 · 0 评论 -
pytorch基础:模型的权值初始化与损失函数
损失函数: 衡量模型输出与真实标签的差异.而我们谈损失函数的时候,往往会有三个概念:损失函数,代价函数,目标函数.函数名定义损失函数(Loss Function)计算一个样本的模型输出与真实标签的差异Loss = f(y^,y)代价函数 (Cost Function)计算整个样本的模型输出与真实标签的差异,是所有样本损失函数的平均值目标函数(objective Function)代价函数加上正则项.实际上就直接说成损失函数# forward# view。原创 2024-10-06 16:11:22 · 1376 阅读 · 0 评论 -
Pytorch基础:网络层
唯一的不同就是前向传播的时候我们需要传进一个indices, 我们的索引值,要不然不知道把输入的元素放在输出的哪个位置上。卷积过程:类似于用一个模板去图形上寻找与它相似的区域,与卷积核模式越相似,激活值越高,从而实现特征提取.最大值池化和平均池化的差别:最大池化的亮度会稍微亮一些,毕竟它都是取的最大值,而平均池化是取平均值。如图用2×2的窗口进行池化操作,最大池化用最大值代替这个窗口,平均池化用平均值代替这个窗口。功能:对二维信号(图像)进行最大值池化上采样(反池化:将大尺寸图像变为小尺寸图像)原创 2024-10-06 11:55:06 · 1201 阅读 · 0 评论 -
Pytorch之模型创建(Module),模型容器(Containers),AlexNet构建
pytorch基础原创 2024-10-05 23:10:01 · 774 阅读 · 0 评论 -
0921VGG网络实现
深度学习之VGG原创 2024-09-21 16:19:55 · 346 阅读 · 0 评论 -
0917np.power()
广播机制原创 2024-09-17 10:17:06 · 321 阅读 · 0 评论 -
Pytorch基础
深度学习从0-1原创 2024-09-15 20:14:04 · 377 阅读 · 0 评论