目录
前言
📅大四是整个大学期间最忙碌的时光,一边要忙着备考或实习为毕业后面临的就业升学做准备,一边要为毕业设计耗费大量精力。近几年各个学校要求的毕设项目越来越难,有不少课题是研究生级别难度的,对本科同学来说是充满挑战。为帮助大家顺利通过和节省时间与精力投入到更重要的就业和考试中去,学长分享优质的选题经验和毕设项目与技术思路。
🚀对毕设有任何疑问都可以问学长哦!
选题指导:
大家好,这里是海浪学长毕设专题,本次分享的课题是
🎯基于人脸特征提取的教职工身份验证系统
课题背景和意义
随着信息技术的快速发展,人脸识别技术在安全管理、考勤系统等领域得到了广泛应用。校园内,教职工的身份管理和出入控制是保障学校安全的重要环节。通过引入人脸识别技术,可以高效地实现教职工身份的自动识别与验证,提升校园管理的智能化水平。研究教职工人脸识别的课题,不仅能够满足学校对安全管理的需求,还有助于推动人脸识别技术的不断进步和应用。
实现技术思路
一、算法理论基础
1.1 卷积神经网络
卷积神经网络(CNN)是启发于生物视觉处理机制而提出的一种新型高效特征提取网络。卷积神经网络不同于手工构建的特征提取器,包含许多神经元,各神经元之间通过互相连接并共享权值,最终通过学习得到合理的权重值,从而提取出具体任务所需的特征。一个完整的卷积神经网络应包含输入层、卷积层、激活函数层、池化层以及全连接层,通过交替使用和叠加不同数量的这些层,最终构建一个完整的卷积神经网络。
卷积神经网络模型使用的是全卷积神经网络(FCN),即模型中的全连接层也是通过卷积连接的。卷积层是完整卷积神经网络中最重要的层,通过卷积核与图像做卷积操作,实现提取图像的不同特征。操作类似于滑动窗口,但通过滤波器(卷积核)不断在图像上滑动,每滑动到一个区域,便与该区域内所有像素做内积。常见的卷积核尺寸为3×3、5×5以及7×7,通过这些卷积核不断进行卷积和内积操作后,得到的特征图会越来越小,从而提取到更细致的特征。
池化层在卷积神经网络中一般用于输入的下采样操作,通常在经过连续卷积后穿插池化层,一方面减小后续特征图的尺寸,另一方面减少网络中的参数量。使用池化层可以有效避免模型过拟合,提高模型的计算效率。常见的池化包括最大池化和平均池化。最大池化选取最大的像素值,通过定义池化核的尺寸,对特征图进行滑动扫描,当池化核扫描到某一区域时,选择该区域的最大像素值作为输出。平均池化选取区域内像素值的平均值,操作与最大池化类似,最终输出值为选定区域的像素值的平均值。
激活函数对于卷积神经网络非常重要,作用是保留需要的特征,剔除模型不需要的特征。激活函数的存在使网络具备非线性建模能力。如果没有激活函数,模型则只能表达线性映射,此时即使卷积神经网络设计得再深,层数再多,其实本质上也与一层网络相同。这不仅造成大量冗余数据,最终模型性能也会非常差。
全连接层是神经网络中的一个重要组件,其主要功能是将前一层的所有神经元与当前层的每个神经元连接。在全连接层中,每个输入特征都会被赋予一个权重,通过加权求和后再经过激活函数进行非线性变换,以输出最终结果。
1.2 目标检测算法
YOLOv5是一个基于深度学习的实时目标检测模型,继承了YOLO系列模型的优点,同时引入了一系列新的技术和改进,以实现更高的检测精度和更快的推理速度。YOLOv5的网络结构主要由几个关键组件组成。
YOLOv5的主干网络负责从输入图像中提取特征,通常采用CSPDarknet作为基础结构。CSPDarknet通过引入CSP技术,有效地分离特征图,从而增强了模型的特征表达能力,并减少了计算复杂度。具体而言,CSP技术将特征图分为两部分,分别经过不同的路径进行处理,最终再合并,从而提高了梯度流动,增强了网络的学习能力。主干网络通常由多个卷积层、批量归一化层和激活函数构成,通过多层堆叠,逐步提取出从低层到高层的丰富特征,这种层次化的特征提取使YOLOv5能够有效地捕捉图像中的各种信息。
Neck部分的设计旨在聚合来自不同层次的特征,以增强模型对不同尺度目标的检测能力。YOLOv5的Neck通常结合了特征金字塔网络和路径聚合网络技术。特征金字塔网络通过构建多尺度特征图,使得模型能够同时处理大目标和小目标的检测。它通过自上而下的路径融合不同层次的特征,从而提升了模型的空间分辨率和语义信息。路径聚合网络进一步增强了特征的传递与融合,通过自下而上的特征融合,强化了低层特征的语义信息,从而提升了小目标的检测能力。这种上下文信息的聚合使得YOLOv5能够在不同尺度上取得良好的检测效果。
YOLOv5的Head部分负责最终的目标检测任务,包括物体的分类和定位。检测头的输出包括每个检测框的类别概率、物体存在性置信度以及边界框的坐标。YOLOv5采用了锚框机制,将预定义的锚框与特征图结合,以提高检测精度。YOLOv5使用多个不同比例和尺寸的锚框,以适应不同大小和形状的目标。这些锚框在训练过程中与真实目标进行匹配,以优化模型的检测能力。YOLOv5在不同尺度的特征图上进行预测,确保能够处理小型和大型目标,通常会在三个不同的尺度上输出检测结果,以提高整体的检测性能。
YOLOv5的输出层使用激活函数来输出每个锚框的物体存在性概率和分类概率,同时输出每个框的边界框坐标。模型的损失函数结合了定位损失、分类损失和置信度损失,以确保模型在训练过程中优化这几个方面的性能。损失函数通常由三部分组成:定位损失用于评估预测框与真实框的偏差,分类损失用于评估预测类别与真实类别之间的差异,置信度损失用于评估检测框是否包含目标的置信度。这种设计使得模型在训练时能够关注于所有重要的输出。
二、 数据集
2.1 数据集
数据集制作过程首先涉及图像采集。为了构建一个高质量的训练集,我们选择了自主拍摄和互联网采集两种方式。自主拍摄可以确保图像的多样性和代表性,涵盖不同的表情、光照和背景条件,同时也能够控制图像的质量。互联网采集则可以通过网络资源获取大量的教职工人脸图像,进一步丰富数据集的规模。采用了专门的标注工具LabelImg对每张人脸图像进行标注,确认每个人脸的边界框及其对应的身份信息。准确的标注能够为后续的训练提供可靠的标签,从而提高模型的识别准确率和鲁棒性。在标注过程中,需要确保标注的一致性和准确性,以避免人为错误对模型训练产生负面影响。
2.2 数据扩充
将数据集分为训练集、验证集和测试集,通常采用70%用于训练、15%用于验证、15%用于测试的比例。此外,为了增强模型的泛化能力,我们还进行了数据扩展操作,如随机旋转、缩放、翻转和颜色调整等。
三、实验及结果分析
3.1 实验环境搭建
3.2 模型训练
数据预处理需要对采集到的人脸图像进行标准化处理,包括调整图像大小、归一化像素值以及进行数据增强等。通过调整图像大小,使得所有输入图像具有相同的尺寸,便于后续的批处理。归一化像素值可以将图像数据转化为0到1之间的值,从而加快模型的收敛速度。数据增强技术如随机旋转、平移、翻转及色彩调整可以增加数据的多样性,帮助模型更好地泛化。
import cv2
import numpy as np
from keras.preprocessing.image import ImageDataGenerator
# 图像加载和预处理
def load_and_preprocess_image(image_path):
image = cv2.imread(image_path)
image = cv2.resize(image, (224, 224)) # 调整图像大小
image = image / 255.0 # 归一化处理
return image
# 数据增强
data_gen = ImageDataGenerator(rotation_range=20, width_shift_range=0.2, height_shift_range=0.2,
shear_range=0.2, zoom_range=0.2, horizontal_flip=True)
构建人脸特征提取模型。可以选择使用卷积神经网络作为基础网络结构,或者使用预训练的模型进行迁移学习。在构建模型时,需要定义网络的层次结构,包括卷积层、池化层和全连接层,以便提取有用的特征并进行分类。
from keras.models import Sequential
from keras.layers import Conv2D, MaxPooling2D, Flatten, Dense, Dropout
# 构建CNN模型
def create_model():
model = Sequential()
model.add(Conv2D(32, (3, 3), activation='relu', input_shape=(224, 224, 3)))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Conv2D(64, (3, 3), activation='relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Flatten())
model.add(Dense(128, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(num_classes, activation='softmax')) # num_classes为类别数
return model
model = create_model()
定义合适的损失函数和优化器,通常选择交叉熵作为损失函数,Adam或SGD作为优化器。通过将训练数据输入模型进行多轮迭代训练,模型将逐渐学习到人脸特征并优化其参数。
from keras.optimizers import Adam
# 编译模型
model.compile(loss='categorical_crossentropy', optimizer=Adam(learning_rate=0.001), metrics=['accuracy'])
# 训练模型
history = model.fit(train_data, train_labels, validation_data=(val_data, val_labels), epochs=50, batch_size=32)
模型训练完成后,必须对模型进行评估,以了解其在未见数据上的性能。通过使用验证集或测试集计算模型的准确率、精确率、召回率等指标,以评估模型的泛化能力。同时,可以绘制训练过程中的损失和准确率曲线,以观察模型的收敛情况。
# 评估模型
test_loss, test_accuracy = model.evaluate(test_data, test_labels)
print(f'Test accuracy: {test_accuracy}')
# 绘制损失和准确率曲线
import matplotlib.pyplot as plt
plt.plot(history.history['accuracy'])
plt.plot(history.history['val_accuracy'])
plt.title('Model accuracy')
plt.ylabel('Accuracy')
plt.xlabel('Epoch')
plt.legend(['Train', 'Validation'], loc='upper left')
plt.show()
为了进一步提升模型的性能,可以进行模型优化。常见的优化方法包括调整学习率、使用早停策略、正则化、模型剪枝等。此外,还可以通过集成学习技术,将多个模型的预测结果结合起来,以提高最终的识别准确率。
from keras.callbacks import EarlyStopping
# 使用早停策略
early_stopping = EarlyStopping(monitor='val_loss', patience=5, restore_best_weights=True)
# 重新训练模型
history = model.fit(train_data, train_labels, validation_data=(val_data, val_labels), epochs=50, batch_size=32, callbacks=[early_stopping])
海浪学长项目示例:
最后
我是海浪学长,创作不易,欢迎点赞、关注、收藏。
毕设帮助,疑难解答,欢迎打扰!