毕业设计:基于计算机视觉的海关安检图像识别 人工智能

目录

前言

课题背景和意义

实现技术思路

一、算法理论基础

1.1 卷积神经网络

1.2 目标检测算法

二、 数据集

2.1 数据集

2.2 数据扩充

三、实验及结果分析

3.1 实验环境搭建

3.2 模型训练

最后


前言

    📅大四是整个大学期间最忙碌的时光,一边要忙着备考或实习为毕业后面临的就业升学做准备,一边要为毕业设计耗费大量精力。近几年各个学校要求的毕设项目越来越难,有不少课题是研究生级别难度的,对本科同学来说是充满挑战。为帮助大家顺利通过和节省时间与精力投入到更重要的就业和考试中去,学长分享优质的选题经验和毕设项目与技术思路。

🚀对毕设有任何疑问都可以问学长哦!

    选题指导:

        最新最全计算机专业毕设选题精选推荐汇总

        大家好,这里是海浪学长毕设专题,本次分享的课题是

       🎯基于计算机视觉的海关安检图像识别

课题背景和意义

       随着全球贸易的快速发展,海关安检工作面临着越来越大的压力和挑战。有效识别海关安检X光图像中的危险品,例如武器、爆炸物、毒品等,对于保障国家安全和公共安全具有重要意义。传统的安检方法依赖人工检查,效率低且容易出错。因此,基于图像处理和深度学习技术的自动化危险品识别系统应运而生。通过对X光图像进行分析和识别,能够提高安检的准确性和效率,减少安全隐患,对海关和相关部门的工作具有重要的现实意义和应用价值。

实现技术思路

一、算法理论基础

1.1 卷积神经网络

       卷积神经网络(CNN)作为深度学习的一种重要架构,发挥了至关重要的作用。卷积神经网络的三大主要部分:主干网络、特征提取和分类器。

       图像经过多个卷积层和池化层的处理,卷积层的作用是通过卷积核滑动在输入图像上,对图像的局部区域进行特征提取,而池化层则用于降低特征图的维度,减少计算复杂度,同时保留重要特征。通过使用激活函数引入非线性,网络能够学习到更复杂的特征表示。对于海关安检图像,主干网络可以帮助识别包裹中的潜在危害物品、违禁品等,这些特征可能包括物体的形状、纹理、颜色等信息。

毕业设计:基于计算机视觉的海关安检图像识别

       特征提取是卷积神经网络中的关键步骤,主要目的是将主干网络提取到的特征进行进一步处理和优化。在海关安检图像识别中,特征提取的过程通常涉及到特征图的调整、融合和增强。通过使用多尺度特征提取技术,可以帮助模型更好地识别不同大小和形状的物体。在特征提取阶段,通常会引入一些新层,如全局平均池化层和批归一化层,以改善网络的性能。全局平均池化层有助于将特征图的空间信息压缩成一个单一的特征向量,而批归一化则通过规范化每一层的输出,加速训练过程并提高模型的稳定性。在海关安检场景中,特征提取的精细化能够更准确地识别包裹中的可疑物品,减少误报和漏报的风险。

       分类器是卷积神经网络的最后一部分,负责将提取到的特征映射到具体的类别。在海关安检图像识别任务中,分类器的目标是判断包裹中的物品是否属于违禁品或可疑物品。通常,分类器由一个或多个全连接层构成,最后通过softmax激活函数输出每个类别的概率分布。模型的训练通常采用交叉熵损失函数,通过反向传播算法优化模型参数。并且,分类器的设计需要根据具体的任务需求进行调整,以适应不同的类别数量和类别特征。通过训练,模型能够学习到如何将输入图像与特定的类别相匹配,从而实现对海关安检图像中物品的准确识别。

1.2 目标检测算法

       YOLOv5s作为目标检测算法,具备高效性和实时性的特点。YOLOv5s 是 YOLO 系列中的轻量级版本,适合在资源有限的环境中快速处理图像。 YOLOv5s 的三大主要部分:主干网络、颈部网络和检测头。

       主干网络是 YOLOv5s 的基础部分,负责从输入图像中提取特征, 采用了一种称为 CSPNet的结构,这种结构通过将特征图分成两部分进行处理,从而减少了计算量,并提升了模型的特征提取能力。这种分段处理的方式不仅提高了特征的多样性,还增强了网络的学习能力。主干网络需要能够有效地识别出包裹中的可疑物品、违禁品及其他重要特征。YOLOv5s 通过多个卷积层和归一化层,逐层提取图像的低级特征和高级特征。

       

       颈部网络负责将主干网络提取到的特征进行进一步处理和融合,以增强模型对不同尺度物体的检测能力。YOLOv5s 的颈部网络通常采用特征金字塔网络(FPN)和路径聚合网络(PAN)相结合的方式。这种设计不仅能够高效地融合来自不同层次的特征,还能在多尺度检测时保持空间信息的完整性。颈部网络能够很好地处理各种形状和大小的物体。例如,对于小型违禁品或隐藏在大包裹中的物品,颈部网络通过整合不同层次的特征,能够更准确地检测出这些物体。

       检测头负责生成最终的检测结果,包括边界框位置、置信度和类别概率。YOLOv5s 通过多个不同尺度的特征图进行检测,以应对不同大小的物体。每个特征图通过卷积层生成输出,最终将检测结果合并。检测头直接影响到模型的检测精度和速度。YOLOv5s 使用了新的损失函数(如 CIoU 损失)来优化边界框的回归精度,确保模型在定位物体时能够更准确。检测头还采用了非极大值抑制(NMS)算法,以去除冗余的检测框,确保最终输出的结果是最优的。

二、 数据集

2.1 数据集

       图像的采集可以选择自主拍摄和互联网采集两种方式。自主拍摄的优势在于可以根据具体需求控制图像的质量和拍摄条件,确保图像清晰且具有代表性,例如在真实的安检场景中拍摄各种物品的图像。而互联网采集则可以通过公开的数据集和图像库获取大量的安检相关图像,虽然这可能在数据的多样性和质量上存在一定的变数,但仍然可以作为补充资源。使用专业的标注工具(如 LabelMe、Labelbox 或 VGG Image Annotator)进行标注,确保每个图像中物体的类别和位置被准确标注。在海关安检的场景中,标注的内容通常包括可疑物品、违禁品的边界框和类别信息。为提高标注的准确性,可以采用多位标注员进行交叉验证,确保数据集的质量和一致性。

2.2 数据扩充

       数据集会被划分为训练集、验证集和测试集,以实现模型的有效训练和评估。在这一步骤中,数据扩展技术如旋转、翻转、缩放和添加噪声等方法可以被应用,以增强数据集的多样性。这种数据增强不仅帮助模型提升对不同物体的识别能力,还能减少过拟合现象,从而提高海关安检图像识别系统的准确性和鲁棒性。

三、实验及结果分析

3.1 实验环境搭建

3.2 模型训练

       图像采集可以选择自主拍摄和互联网采集,以确保数据集的多样性和代表性。采集到的图像需要经过标注,通常使用标注工具(如 LabelMe 等)来为每个图像标注物体的类别和位置。标注完成后,数据集需要进行划分,通常分为训练集、验证集和测试集,以便后续模型的训练和评估。在这一步骤中,数据扩展技术(如旋转、翻转、缩放等)也可以被应用,以增加数据集的多样性,提升模型的泛化能力。

from sklearn.model_selection import train_test_split

# 假设 images 和 labels 是存储图像和对应标注的路径列表
images = [...]  # 图像路径列表
labels = [...]  # 标签路径列表

# 划分数据集
X_train, X_val, y_train, y_val = train_test_split(images, labels, test_size=0.2, random_state=42)

       选择使用 YOLOv5深度学习模型。以 YOLOv5 为例,模型构建过程通常包括选择合适的主干网络、颈部网络和检测头。通过调整超参数(如学习率、批大小等)来优化模型的性能。选择适当的损失函数(如交叉熵损失)和优化器(如 Adam 或 SGD),并设置训练的轮数和批大小。训练过程中可以使用回调(callbacks)来监控模型的性能,例如保存最佳模型和调整学习率。通过训练,模型能够学习到如何将输入图像与特定的类别相匹配,从而实现对海关安检图像中物品的准确识别。

model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])

# 训练模型
history = model.fit(X_train, y_train, validation_data=(X_val, y_val), epochs=50, batch_size=16)

       使用验证集或测试集对模型进行评估,以计算模型的性能指标,如准确率、召回率和 F1 分数等。有助于了解模型在未见数据上的表现,确保其具备良好的泛化能力。可以使用混淆矩阵等可视化工具来分析模型的分类结果,从而发现潜在的问题。对输入图像进行预处理,并将模型的输出结果进行后处理,以得到最终的检测结果。可以通过展示边界框和类别标签的方式,帮助安检人员快速识别和处理可疑物品。

# 推理示例
new_images = [...]  # 新的待检测图像
predictions = model.predict(new_images)

# 后处理,展示检测结果
for img, pred in zip(new_images, predictions):
    visualize_detection(img, pred)  # 自定义可视化函数

海浪学长项目示例:

最后

我是海浪学长,创作不易,欢迎点赞、关注、收藏。

毕设帮助,疑难解答,欢迎打扰!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值