混合高斯模型的EM算法

这篇笔记详细介绍了混合高斯模型中的EM算法。在混合高斯模型中,目标是通过EM算法求解给定数据集的最大似然估计,包括πk、μk和σk2。EM算法包含E-step(计算后验概率γZi(k))和M-step(用后验概率更新参数),并不断迭代直至对数似然函数变化小于阈值E。

混合高斯模型的EM算法

Pre-requisites

  "混合模型简介"笔记

Overview

  在"混合模型简介"笔记中, 我们介绍了混合模型. 回顾一下, 假如观测值XiX_{i}Xi来源于含有KKK个组件的混合模型, 那么XiX_{i}Xi的边缘概率分布的形式为:P(Xi=x)=∑k=1KπkP(Xi=x∣Zi=k) P\left(X_{i}=x\right)=\sum_{k=1}^{K} \pi_{k} P\left(X_{i}=x | Z_{i}=k\right) P(Xi=x)=k=1KπkP(Xi=xZi=k)其中Zi∈{ 1,…,K}Z_{i} \in\{1, \ldots, K\}Zi{ 1,,K}为隐变量, 代表XiX_{i}Xi对应的模型组件, P(Xi∣Zi)P\left(X_{i} | Z_{i}\right)P(XiZi)代表混合组件的分布, πk\pi_{k}πk代表XiX_{i}Xi来源于第k个组件的概率.
  在这篇笔记中, 我们将介绍混合高斯模型中的expectation-maximization (EM)\textbf{expectation-maximization (EM)}expectation-maximization (EM)算法. 我们有条件分布Xi∣Zi=k∼N(μk,σk2)X_{i} | Z_{i}=k \sim N\left(\mu_{k}, \sigma_{k}^{2}\right)XiZi=kN(μk,σk2), 因此XiX_{i}Xi的边缘概率分布为:P(Xi=x)=∑k=1KP(Zi=k)P(Xi=x∣Zi=k)=∑k=1KπkN(x;μk,σk2) P\left(X_{i}=x\right)=\sum_{k=1}^{K} P\left(Z_{i}=k\right) P\left(X_{i}=x | Z_{i}=k\right)=\sum_{k=1}^{K} \pi_{k} N\left(x ; \mu_{k}, \sigma_{k}^{2}\right) P(Xi=x)=k=1KP(Zi=k)P(Xi=xZi=k)=k=1KπkN(x;μk,σk2)类似地, X1,…,XnX_{1}, \ldots, X_{n}X1,,Xn的联合概率分布为P(X1=x1,…,Xn=xn)=∏i=1n∑k=1KπkN(xi;μk,σk2) P\left(X_{1}=x_{1}, \ldots, X_{n}=x_{n}\right)=\prod_{i=1}^{n} \sum_{k=1}^{K} \pi_{k} N\left(x_{i} ; \mu_{k}, \sigma_{k}^{2}\right) P(X1=x1,,Xn=xn)=i=1nk=1KπkN

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值