混合高斯模型的EM算法
Pre-requisites
"混合模型简介"笔记
Overview
在"混合模型简介"笔记中, 我们介绍了混合模型. 回顾一下, 假如观测值XiX_{i}Xi来源于含有KKK个组件的混合模型, 那么XiX_{i}Xi的边缘概率分布的形式为:P(Xi=x)=∑k=1KπkP(Xi=x∣Zi=k) P\left(X_{i}=x\right)=\sum_{k=1}^{K} \pi_{k} P\left(X_{i}=x | Z_{i}=k\right) P(Xi=x)=k=1∑KπkP(Xi=x∣Zi=k)其中Zi∈{
1,…,K}Z_{i} \in\{1, \ldots, K\}Zi∈{
1,…,K}为隐变量, 代表XiX_{i}Xi对应的模型组件, P(Xi∣Zi)P\left(X_{i} | Z_{i}\right)P(Xi∣Zi)代表混合组件的分布, πk\pi_{k}πk代表XiX_{i}Xi来源于第k个组件的概率.
在这篇笔记中, 我们将介绍混合高斯模型中的expectation-maximization (EM)\textbf{expectation-maximization (EM)}expectation-maximization (EM)算法. 我们有条件分布Xi∣Zi=k∼N(μk,σk2)X_{i} | Z_{i}=k \sim N\left(\mu_{k}, \sigma_{k}^{2}\right)Xi∣Zi=k∼N(μk,σk2), 因此XiX_{i}Xi的边缘概率分布为:P(Xi=x)=∑k=1KP(Zi=k)P(Xi=x∣Zi=k)=∑k=1KπkN(x;μk,σk2) P\left(X_{i}=x\right)=\sum_{k=1}^{K} P\left(Z_{i}=k\right) P\left(X_{i}=x | Z_{i}=k\right)=\sum_{k=1}^{K} \pi_{k} N\left(x ; \mu_{k}, \sigma_{k}^{2}\right) P(Xi=x)=k=1∑KP(Zi=k)P(Xi=x∣Zi=k)=k=1∑KπkN(x;μk,σk2)类似地, X1,…,XnX_{1}, \ldots, X_{n}X1,…,Xn的联合概率分布为P(X1=x1,…,Xn=xn)=∏i=1n∑k=1KπkN(xi;μk,σk2) P\left(X_{1}=x_{1}, \ldots, X_{n}=x_{n}\right)=\prod_{i=1}^{n} \sum_{k=1}^{K} \pi_{k} N\left(x_{i} ; \mu_{k}, \sigma_{k}^{2}\right) P(X1=x1,…,Xn=xn)=i=1∏nk=1∑KπkN