文章目录
一、Pytorch中transforms介绍
transforms是torchvision中的一个模块(torchvision是Pytorch的计算机视觉工具包),该模块定义了很多用于图像预处理的类,如归一化(Normalize类),尺寸变化(Resize类),转换为tensor格式(ToTensor类),通过实例化该工具类,可以方便地对图像进行各种变换操作。
二、Pytorch中transforms使用
导入模块
from torchvision import transforms
本文只举例几个常见的Pytorch中transforms使用方法,详细所有函数说明和用法可以鼠标移动到导入模块的transforms代码上,按住Ctrl+鼠标左键单击查看源码,最终的transforms工具为transforms.py文件,里面定义了各种图像与处理的类。
也可以通过在transforms.py文件中按Alt+7,以结构树的形式查看完整预处理类,单击左侧类名即可查看定义和说明
1、transforms.ToTensor()
transforms.ToTensor():将PIL图像(Image.open
)或者ndarray图像(cv2.imread
)转换为tensor.
示例
import cv2
from torch.utils.tensorboard import SummaryWriter
from torchvision import transforms
writer = SummaryWriter("logs")
img = cv2.imread("./data/train/ants/0013035.jpg")
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) # cv2读入图像为BGR,转换成RGB
# transforms使用
trans_tensor = transforms.ToTensor() # ToTensor类,实例化一个ToTensor工具
tensor_img = trans_tensor(img)
writer.add_image("ants_img", tensor_img, 1)
writer.close()
运行上方代码成功后,项目目录会创建logs文件夹,并将结果保存在该logs目录下。
查看:打开项目Terminal,通过tensorboard 可视化进行查看,执行tensorboard --logdir=logs
,运行成功如下
单击蓝色链接即可查看结果如下
2、transforms.Normalize()
transforms.Normalize():用均值和标准差归一化张量(tensor)图像
示例
import cv2
from torch.utils.tensorboard import SummaryWriter
from torchvision import transforms
writer = SummaryWriter("logs")
img = cv2.imread("./data/train/ants/0013035.jpg")
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) # cv2读入图像为BGR,转换成RGB
# transforms使用
trans_tensor = transforms.ToTensor() # ToTensor类,实例化一个ToTensor工具
tensor_img = trans_tensor(img)
trans_norm = transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5]) # 归一化
norm_img = trans_norm(tensor_img)
writer.add_image("ants_img", norm_img, 2)
writer.close()
查看:如上打开项目Terminal,通过tensorboard 可视化进行查看,进入之前的链接刷新 或 执行tensorboard --logdir=logs
后,单击蓝色链接查看结果如下
3、transforms.Resize()
transforms.Resize():将输入图像的大小调整为给定的大小(高宽),参数值可以是序列 如(512, 512)或 int(512),图像可以是PIL图像或torch张量,shape格式为[…, H, W]
示例
import cv2
from torch.utils.tensorboard import SummaryWriter
from torchvision import transforms
writer = SummaryWriter("logs")
img = cv2.imread("./data/train/ants/0013035.jpg")
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) # cv2读入图像为BGR,转换成RGB
# transforms使用
trans_tensor = transforms.ToTensor() # ToTensor类,实例化一个ToTensor工具
tensor_img = trans_tensor(img)
trans_norm = transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5]) # 归一化
norm_img = trans_norm(tensor_img)
print(norm_img.shape)
trans_resize = transforms.Resize((512, 512)) # 改变尺寸为(512, 512)
resize_img = trans_resize(norm_img)
print(resize_img.shape)
writer.add_image("ants_img", resize_img, 3)
writer.close()
控制台输出如下,尺寸高宽变为了(512, 512)
查看
4、transforms.Compose()
transforms.Compose():将多个变换组合在一起
示例
import cv2
from torch.utils.tensorboard import SummaryWriter
from torchvision import transforms
writer = SummaryWriter("logs")
img = cv2.imread("./data/train/ants/0013035.jpg")
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) # cv2读入图像为BGR,转换成RGB
# transforms使用
trans_tensor = transforms.ToTensor() # ToTensor类,实例化一个ToTensor工具
tensor_img = trans_tensor(img)
trans_norm = transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5]) # 归一化
norm_img = trans_norm(tensor_img)
print(norm_img.shape)
trans_resize = transforms.Resize((512, 512))
resize_img = trans_resize(norm_img)
print(resize_img.shape)
# transforms.Compose()
trans_compose = transforms.Compose([transforms.ToTensor(),
transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5]),
transforms.Resize(400)]) # 只传如一个值时,图像的较小边resize到该尺寸,另一边按这个比例缩放
compose_img = trans_compose(img)
print(compose_img.shape)
writer.add_image("ants_img", compose_img, 4)
writer.close()
运行后经过transforms.Compose()一系列操作后,图像尺寸变为了(400, 600)
查看