python中sigmoid指数溢出的解决方法

该博客讨论了在神经网络中sigmoid激活函数可能导致的指数溢出问题,并提出了一种解决方案。通过在分式中引入一个小值,可以避免溢出。文章详细介绍了如何使用numpy库在矩阵运算中实现这一优化,特别是在x值为负时,利用numpy.nonzero()函数获取坐标并分别计算正负部分,从而确保计算的稳定性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

作为神经网络中的激活函数

sigmoid(x)=\frac{1}{1+e^{-x}}

从整体来看,这个式子的值恒小于1,似乎没有溢出的风险,但是对于计算机来说,需要计算的每一个步骤都不溢出才行。

因此当x<0时,式e^{-x}可能发生指数溢出。

对此,可以对sigmoid函数分式上下同乘一个较小值,当x<0时且e^{-x}发生指数溢出时,这个较小值可以是e^{x}

 因此sigmoid函数可以改写为

 

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值