Keras(一)——简单上手

本文介绍Keras,一个用于设计、调试、评估、应用和可视化的深度学习模型的开源库。核心内容包括Keras的基本结构、如何使用Sequential模型进行深度学习模型的构建,以及模型的配置、训练、评估和预测等关键步骤。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Keras

Keras是一个由Python编写的开源人工神经网络库,可以作为Tensorflow、Microsoft-CNTK和Theano的高阶应用程序接口,进行深度学习模型的设计、调试、评估、应用和可视化 。

Keras的核心数据结构是model,最简单的模型是Sequential顺序模型。

简单上手

Sequential模型
from keras.models import Sequential
model = Sequential()
用.add()堆叠模型
from Kerls.layers import Dense

model.add(Dense(units=64, activation='relu',input_dim=100))
model.add(Dense(units=10, activation='softmax'))
使用.compile() 配置学习过程
model.compile(loss='categorical_crossentropy',
			optimizer='sjd',
			metrics=['accuracy'])
配置自己的优化器(展现源代码的易扩展性)
model.compile(loss=keras.losses.categorical_crossentropy,
              optimizer=keras.optimizers.SGD(lr=0.01, momentum=0.9, nesterov=True))
批量在训练数据上进行迭代
model.fit(x_train, y_train, epochs=5, batch_size=32)
手动将批次的数据提供给模型
model.train_on_batch(x_batch, y_batch)
评估模型性能
loss_and_metrics = model.evaluate(x_test, y_text, batch_size=128)
对新的数据生成预测
classes = model.predict(x_text, batch_size=128)
基于开源大模型的教学实训智能体软件,帮助教师生成课前备课设计、课后检测问答,提升效率与效果,提供学生全时在线练习与指导,实现教学相长。 智能教学辅助系统 这是个智能教学辅助系统的前端项目,基于 Vue3+TypeScript 开发,使用 Ant Design Vue 作为 UI 组件库。 功能模块 用户模块 登录/注册功能,支持学生和教师角色 毛玻璃效果的登录界面 教师模块 备课与设计:根据课程大纲自动设计教学内容 考核内容生成:自动生成多样化考核题目及参考答案 学情数据分析:自动化检测学生答案,提供数据分析 学生模块 在线学习助手:结合教学内容解答问题 实时练习评测助手:生成随练题目并纠错 管理模块 用户管理:管理员/教师/学生等用户基本管理 课件资源管理:按学科列表管理教师备课资源 大屏概览:使用统计、效率指数、学习效果等 技术栈 Vue3 TypeScript Pinia 状态管理 Ant Design Vue 组件库 Axios 请求库 ByteMD 编辑器 ECharts 图表库 Monaco 编辑器 双主题支持(专业科技风/暗黑风) 开发指南 # 安装依赖 npm install # 启动开发服务器 npm run dev # 构建生产版本 npm run build 简介 本项目旨在开发个基于开源大模型的教学实训智能体软件,帮助教师生成课前备课设计、课后检测问答,提升效率与效果,提供学生全时在线练习与指导,实现教学相长。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值