(一):深度多模态学习-最近的进展和趋势的调查

本文深入探讨深度多模态学习的最新发展,包括模型、融合结构和正则化策略。研究了从早期融合到深度融合的各种方法,强调了多模态数据在人类活动识别、医学应用和自动驾驶等领域的应用。文章还讨论了模型选择、结构学习与优化的重要性,以及未来的研究方向,如架构自动学习和最佳融合结构的发现。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

  • 题目:Deep multimodal learning- A survey on recent advances and trends。深度多模态学习-最近的进展和趋势的调查
  • 出处:IEEE Signal Process. Mag. 34(6): 96-108 (2017)

Abstruct

本文主要:

  1. 对深度多模态学习体系结构进行分类
  2. 讨论在深度学习体系结构中融合学习到的多模态表示的方法
  3. 学习或优化多模态融合结构的正则化策略和方法

Introduction

  • 多模态数据集由观察共同现象的不同传感器的数据组成,其目标是以一种互补的方式使用数据来学习复杂的任务。
  • 深度学习的主要优势之一是:可以为每种模式自动学习层次表示。
  • 本文的目的:对深度多模态学习的研究现状进行全面的综述,并通过强调这一活跃领域的进展、差距和挑战,提出未来的研究方向。
  • 本文主要介绍
    1)使用正则化技术改进交叉模态学习的方法(参见“多模态正则化”一节)
    2)通过搜索、优化或一些学习过程(参见“融合结构学习和优化”一节),试图找到最优的深度多模态架构的方法。

Background

  • 使用多模态数据的潜在动机是,对于给
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Laura_Wangzx

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值