人工智能-统计机器学习-特征人脸方法(Eigenface)

特征人脸方法,又称Eigenface,利用主成分分析(PCA)进行人脸图像降维,通过线性组合特征人脸来表达原始图像,从而实现人脸识别。关键步骤包括将人脸图像转换为特征向量,并通过相关系数实现维度降低,使得人脸由像素点表达转变为特征人脸表达,用于后续的分类和相似性比较。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

人脸识别之特征人脸方法是一种应用主成份分析来实现人脸图像降维的方法,其本质是用一种称为“特征人脸(eigenface)”的特征向量按照线性组合形式来表达每一张原始人脸图像,进而实现人脸识别。 由此可见,这一方法的关键之处在于如何得到特征人脸。

算法描述:

每个人脸特征向量 ?? 与原始人脸数据 ?? 的维数是一样的,均为1024。

可将每个特征向量还原为 32 × 32 的人脸图像,称之为特征人脸,因此可得到 ? 个特征人脸。

基于特征人脸的降维 

(1)将每幅人脸分别与每个特征人脸做矩阵乘法,得到一个相关系数

(2)每幅人脸得到 ? 个相关系数 ⇒ 每幅人脸从1024维约减到 ? 维 

(3)由于每幅人脸是所有特征人脸的线性组合,因此就实现人脸从“像素点表达”到“特征人脸表达”的转变。每

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值