(转自头条新闻)黄金搭档:自然语言处理(NLP)+ 知识图谱

本文探讨了自然语言处理(NLP)和知识图谱在金融领域的融合应用,如智能问答、资讯舆情分析、金融预测、文档信息抽取、自动文档生成、风险评估与反欺诈以及客户洞察。NLP和知识图谱的结合在智能投研、智能投顾、智能风控等领域发挥关键作用,提升金融行业效率和用户体验。案例如AlphaSense、Palantir和NarrativeScience展示了这些技术的实际应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >


自然语言处理(Natural LanguageProcessing, NLP,语义计算)和知识图谱( Knowledge Graph, KG,知识计算)作为认知智能的关键技术,正成为智能金融浪潮中新的热点。这两种技术在金融领域的应用场景有高度的重合,往往是互为依托、互为补充。
当NLP和知识图谱双剑合璧,会优先在金融的哪些场景实现落地?各场景“标配”的核心能力分别有哪些?国内外NLP和知识图谱技术在金融行业的应用到了怎样的程度?读完这篇文章,或许能帮助你对这些前沿科技中的中流砥柱有一个清晰和全面的认识。


  金融行业因其与数据的高度相关性,成为人工智能最先应用的行业之一而NLP与知识图谱作为人工智能技术的重要研究方向与组成部分,正在快速进入金融领域,并日益成为智能金融的基石。一般的Fintech公司只会集中在其中的某些业务方向,只要能深入掌握两到三种能力,就能具有相当的竞争力。在这些业务场景中,NLP和知识图谱技术往往需要共同应用,才能发挥出最大的效能。同时,一种核心能力可以在多个智能金融应用场景中得到应用,这些应用场景包括:智能投研、智能投顾、智能风控、智能客服、智能监管、智能运营等。接下来我们将分析不同的核心能力在各个应用场景的分布情况,对每一种核心能力进行简要介绍,给出它的应用场景,并列举部分国外的典型案例以供大家能够更好的理解和上手。



金融语义应用场景概念框

01智能问答和语义搜索
智能问答和语义搜索是NLP的关键技术,目的是让用户以自然语言形式提出问题,深入进行语义分析,以更好理解用户意图,快速准确获取知识库中的信息。在用户界面上,既可以表现为问答机器人的形式(智能问答),也可以为搜索引擎的形式(语义搜索)。 智能问答系统一般包括问句理解、信息检索