重复测量资料多水平模型

setwd("C:/Users/86153/Desktop/RData/")
bc<-read.csv("C:/Users/86153/Desktop/EX4.csv",sep=',',header=TRUE)
head(bc)
class(bc$treat)
class(bc$time)
class(bc$y)
as.character(bc$treat)
as.character(bc$time)
as.numeric(bc$y)
as.character(bc$id)
as.numeric(bc$age)
library(Matrix)
library(lme4)
install.packages("lmerTest")
library(lmerTest)
model1 <- lmerTest::lmer(y ~treat + (1 | id), data = bc,REML = FALSE)
summary(model1)
model2 <- lmerTest::lmer(y ~ treat+time+treat * time + (1 | id), data = bc,REML = FALSE)
summary(model2)
model3 <- lmerTest::lmer(y ~ treat+time+treat * time + (1+time| id), data = bc,REML = FALSE)
summary(model3)
 

### 线性混合模型重复测量中的应用 #### 应用背景 对于具有重复测量的数据集,传统线性回归可能无法充分处理观测间的依赖关系。线性混合模型通过引入随机效应来解释个体间差异以及同一受试者内多次观察的相关性[^2]。 #### 实现方法概述 利用`statsmodels`库下的`MixedLM`函数能够方便地建立此类模型。该过程涉及定义固定效应部分(即所有样本共享的影响因素),同时也需指定哪些变量作为随机截距或斜率以体现不同主体特有的变化趋势[^1]。 #### Python代码示例 下面给出一段简单的Python代码片段展示如何基于给定数据框df创建并训练一个含有时间点t作为协变量的两水平层次结构(如患者层面和个人随访时刻)上的线性混合效果模型: ```python import statsmodels.api as sm from statsmodels.formula.api import mixedlm # 假设 df 是 pandas DataFrame, 'value' 表示因变量, # 'subject_id' 代表每个参与者的唯一标识符, # 而'time_point' 则记录了每次访问的时间戳。 md = mixedlm("value ~ time_point", data=df, groups=df["subject_id"]) fit_model = md.fit() print(fit_model.summary()) ``` 此段脚本首先导入必要的模块,接着调用了`mixedlm()`构造器指定了响应变量(`value`)与预测因子(`time_point`)之间的一般形式化表达式,并告知算法按哪个字段分组以便估计各组别的特定参数。最后执行`.fit()`完成实际计算工作并将结果摘要打印出来供进一步分析之用。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值