杭电oj2040,vector

本文介绍了一种用于判断两个数是否为亲和数的算法,通过计算并比较两数的真约数之和来确定它们是否互为亲和数。提供了具体的AC代码实现,可用于快速验证给定数值对是否符合亲和数的定义。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Problem Description

古希腊数学家毕达哥拉斯在自然数研究中发现,220的所有真约数(即不是自身的约数)之和为:

1+2+4+5+10+11+20+22+44+55+110=284。

而284的所有真约数为1、2、4、71、 142,加起来恰好为220。人们对这样的数感到很惊奇,并称之为亲和数。一般地讲,如果两个数中任何一个数都是另一个数的真约数之和,则这两个数就是亲和数。

你的任务就编写一个程序,判断给定的两个数是否是亲和数

Input
输入数据第一行包含一个数M,接下有M行,每行一个实例,包含两个整数A,B; 其中 0 <= A,B <= 600000 ;

Output
对于每个测试实例,如果A和B是亲和数的话输出YES,否则输出NO。

Sample Input
2
220 284
100 200

Sample Output
YES
NO

AC代码:

#include <stdio.h>;
#include <algorithm>
#include <vector>
using namespace std;
int main() {
	int n; //行数
	vector<int> vi1, vi2;
	scanf_s("%d", &n);
	while (n--) {
		int a, b;
		int sum1=0, sum2=0;
		scanf_s("%d%d", &a, &b);
		for (int i = 1; i <=a/2; i++) {
			if (a%i == 0) {
				vi1.push_back(i);
			}
		}
		for (int i = 1; i <= b / 2; i++) {
			if (b%i == 0) {
				vi2.push_back(i);
			}
		}
		for (int i = 0; i < vi1.size(); i++) {
			sum1 += vi1[i];
		}
		for (int i = 0; i < vi2.size(); i++) {
			sum2 += vi2[i];
		}
		if (sum1 == b&&sum2==a) {
			printf("YES\n");
		}
		else {
			printf("NO\n");
		}
		vi1.clear();
		vi2.clear();
	}
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值