Transformer 又立功了!又快(420 fps)又好的车道线检测算法

本文探讨了Facebook的DETR算法如何将Transformer应用于车道线检测,提出端到端训练的LSTR模型,实现快速且参数量少的车道线预测。通过多项式参数模型和BipartiteMatchingLoss,算法在TuSimple数据集上表现优秀,且具有良好的泛化能力。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

分享一篇新出的论文 End-to-end Lane Shape Prediction with Transformers,该文为车道线检测问题建立参数模型,使用Transformer捕获道路中细长车道线特征和全局特征,所发明的车道线检测算法与以往相比,可端到端训练、参数量更少、速度更快(高达420 fps,单1080Ti)。

该文作者信息:

Facebook的DETR目标检测算法,说明了Transformer用于计算机视觉的巨大潜力。

该文的一大目标即是将Transformer用于车道线检测,将其用于特征提取部分。

另外,车道线检测以往的方法往往需要经过特征提取和后处理两个过程,这使得整个算法不能端到端训练,作者借助于对车道线曲线和相机内参的描述,采用多项式参数模型来描述车道线,并配以Bipartite Matching Loss函数,实现端到端训练,网络的目标成为预测几个参数,这无需后处理且降低了计算量。

整体网络结构:

车道线参数模型:

对应于网络结构中的 Curve Parameters 的参数组。

在TuSimple数据集测试集上的结果比较:

该文方法取得了速度最快(使用ResNet18作骨干网,420 FPS),精度不是最好,但已经是接近目前文献报告的最好结果,而且参数量极小。(使用1080TI GPU)

使用二次曲线还是三次曲线模型拟合车道线更好呢?作者做了个实验:

结果发现三次曲线略胜一筹。

与PolyLaneNet算法检测结果比较:

可见,该文算法拟合的车道线更加精确。

下图为在作者收集的FVL数据集上的效果:

尽管训练集中没有夜间行车数据,但该文算法仍能很好的检测车道线,表明其强大的泛化能力。

论文地址:

https://arxiv.org/pdf/2011.04233.pdf

代码地址:

https://github.com/liuruijin17/LSTR

(尚未开源)

Transformer最近频频在计算机视觉领域出镜,还可能有哪些突破?欢迎留言。

END

### 基于深度学习车道线检测算法Transformer 技术的应用 近年来,Transformer 架构因其强大的全局建模能力和上下文捕捉能力,在多个计机视觉任务中得到了广泛应用,其中包括基于深度学习车道线检测算法。以下是对这一领域中 Transformer 应用的研究和实现的具体介绍。 --- #### 1. Transformer车道线检测中的作用 Transformer 的引入显著提升了车道线检测的效果。它通过自注意力机制(Self-Attention Mechanism),能够有效地捕获图像中的全局上下文信息[^2]。这在车道线检测任务中尤为重要,因为车道线通常具有连续性和方向性特征,而传统的卷积神经网络可能难以充分表达这些特性。 具体而言,Transformer 能够帮助模型: - 更好地理解车道线的整体形状和走向。 - 结合局部细节特征与全局语义信息,提升检测精度。 - 解决远距离依赖问题,尤其是在复杂道路环境中。 --- #### 2. LATR:一种基于 Transformer 的 3D 车道线检测方法 LATR 是一项前沿研究,展示了如何利用 Transformer 来完成高精度的 3D 车道线检测任务[^3]。该方法的核心思想是将单目摄像头拍摄的二维图像映射到三维空间,并通过 Transformer 学习车道线的空间分布规律。 以下是 LATR 的主要特点: - **编码器-解码器结构**:LATR 使用标准的 Transformer 编码器提取输入图像的特征表示,随后由解码器生成预测的 3D 车道线坐标。 - **几何约束**:通过对相机内外参矩阵施加先验知识,确保预测结果符合实际物理条件。 - **高效推理**:尽管涉及复杂的三维重建过程,但由于 Transformer 的并行计性质,整个流程仍能保持较高的效率。 代码片段示例(部分): ```python import torch.nn as nn class LATR(nn.Module): def __init__(self, encoder_layers, decoder_layers): super(LATR, self).__init__() self.encoder = nn.TransformerEncoder( nn.TransformerEncoderLayer(d_model=512, nhead=8), num_layers=encoder_layers ) self.decoder = nn.TransformerDecoder( nn.TransformerDecoderLayer(d_model=512, nhead=8), num_layers=decoder_layers ) def forward(self, src, tgt): memory = self.encoder(src) # 图像特征编码 output = self.decoder(tgt, memory) # 预测3D车道线 return output ``` --- #### 3. Vision Transformer (ViT)车道线检测中的应用 除了专门针对车道线设计的 Transformer 模型外,通用的 Vision Transformer (ViT)[^2]也被广泛应用于车道线检测任务。ViT 将输入图像划分为固定大小的 patches,并将其视为序列数据送入 Transformer 中处理。这种方法的优势在于可以直接获取整幅图像的全局关系,而不局限于局部区域。 然而,在实际部署时需注意以下几点: - ViT 对硬件资源需求较高,因此建议搭配 Nvidia GPU 和 CUDA 加速环境运行[^2]。 - 输入分辨率的选择会影响最终性能表现;过高可能导致内存溢出,过低则会失重要细节。 --- #### 4. IoU Loss 优化与 Transformer 协同工作 为了进一步改善基于 Transformer车道线检测效果,一些研究提出了结合 IoU Loss 的方案。IoU Loss 主要用于衡量预测框与真实框之间的重叠程度,当应用于车道线回归任务时,可有效减少误判率并提高定位准确性。 公式定义如下: \[ \text{IoU} = \frac{\text{Area of Overlap}}{\text{Area of Union}} \] 对应的 PyTorch 实现可以写成这样: ```python def iou_loss(pred_boxes, target_boxes): intersection = calculate_intersection(pred_boxes, target_boxes) union = calculate_union(pred_boxes, target_boxes) loss = 1 - (intersection / union).mean() return loss ``` --- ### 总结 综上所述,Transformer 已经成为现代车道线检测算法不可或缺的一部分。无论是单独作为主干网络还是与其他模块联合使用,它都能带来显著的质量改进。未来随着更多创新架构和技术手段涌现,相信这一领域还将迎来更加辉煌的发展前景。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值