- 博客(62)
- 收藏
- 关注
原创 Dify中的Agent和发现和调用mcp工具两个节点调用的异同
摘要: Dify中的Agent节点和发现和调用MCP工具节点均支持外部工具调用以扩展模型能力,但存在关键差异。Agent节点通过自主决策(如ReAct框架)实现多步骤复杂任务,支持工具组合和动态流程调整,适用于开放域场景(如旅行规划)。而MCP工具调用节点专注于预注册工具的单次触发,依赖规则匹配,适用于明确需求(如天气查询)。技术实现上,Agent基于多步推理,MCP工具调用则通过API描述直接匹配。选择时,复杂任务用Agent,简单明确任务用MCP工具调用。案例中,Agent配置为高德地图服务,支持多工具
2025-07-25 09:10:10
441
原创 一般的循环为什么不能替换dify的迭代节点
在 Dify中使用 迭代(Iteration) 能显著提升开发效率、结果质量和用户体验,尤其适合生成式 AI 应用的动态需求。
2025-07-24 16:04:18
336
原创 Jinja2在Dify平台的应用
Jinja2是Dify平台的核心模板引擎,主要用于构建动态提示词、格式化输出和处理数据转换。它在Dify中的应用包括:提示词模板构建(变量替换、条件逻辑、循环结构)、数据响应格式化(结构化输出、Markdown生成)、平台特有功能(上下文访问、内置过滤器、API结果处理)以及高级用法(模板继承、宏定义、错误处理)。文章还提供了最佳实践建议和调试技巧,并详细介绍了Jinja2在Dify各节点(如提示词工程、API处理、条件分支等)中的具体应用场景和实现方式。
2025-07-18 17:34:44
386
原创 如何在dify中长时间使用魔搭平台的MCP工具链接
魔搭(ModelScope)平台的MCP工具链接在Dify中的长期使用方案主要包括三种方法:自动刷新链接、心跳保活和断线重连。自动刷新通过定期获取新链接替换旧链接实现;心跳保活则通过循环发送请求维持连接;断线重连则配置错误处理逻辑。具体实施需创建Dify自定义工具,设计定时工作流,并注意频率限制和密钥安全。企业级需求可申请高可用通道或私有化部署。该方案适用于不同场景,从简单调用到高稳定性需求均可覆盖。
2025-07-14 14:53:06
315
原创 dify调用MCP工具:为什么不能直接传值而是要遵循JSON Schema
Dify等API平台采用JSON传递参数的主要原因是:1)遵循MCP等协议的JSON-RPC规范,确保统一性;2)JSON结构支持多参数扩展,保持接口一致性;3)键值对形式明确参数名称,避免歧义;4)严格匹配JSON Schema定义;5)支持复杂数据结构;6)符合主流API设计标准。即使单个参数也需包装为JSON对象(如{"customerNum":"123"}"),以保证扩展性、明确性和兼容性。这种设计体现了对系统健壮性、一致性和未来扩展的考量。
2025-07-11 11:32:10
635
原创 MCP 工具的 Agent 策略 (FunctionCalling与 ReAct)异同与使用场景分析
FunctionCalling与ReAct是两种与MCP工具交互的策略。FunctionCalling通过预定义函数实现结构化调用,适合简单、固定任务(如API查询),具有高效但灵活性低的特点;ReAct采用动态"思考-行动"循环,适合复杂开放性问题(如多步骤推理),灵活性高但开销较大。在Dify平台中,选择策略需考虑任务复杂度:简单任务优先FunctionCalling,复杂任务选用ReAct,也可混合使用(ReAct规划流程+FunctionCalling执行子任务)。开发成本和性能
2025-07-10 10:31:53
598
原创 dify中MCP SSE/StreamableHTTP与mcp server插件的区别
在 Dify 中,MCP SSE / StreamableHTTP 和 mcp-server 插件 都与 MCP(可能是某个自定义协议或服务)相关,但它们的职责和使用场景有所不同
2025-06-25 16:44:57
603
原创 dify批量文本生成表格参数解译
Dify批量文本生成功能支持表格数据的自动化处理,表格需包含input_text必填列(用户输入文本),可选列IMultisentiment(情感标签)和Categories(分类结果)。使用时需确保列名与系统变量一致,上传表格后Dify会逐行处理并输出结果。示例展示了电子产品评价、客户反馈等场景的应用。
2025-06-24 14:25:24
247
原创 如何在Spring AI中配置多模型切换
Spring AI多模型切换配置指南 本文介绍了在Spring AI中实现多模型切换的三种方案:1) Bean别名注入,通过@Qualifier区分不同模型;2) 动态运行时选择,使用Map存储客户端并按条件调用;3) 统一配置类,支持高级定制。方案对比显示,Bean别名适合编译时确定模型,动态选择更灵活但需手动管理,工厂模式则提供更好扩展性。配置示例涵盖OpenAI、Gemini和本地Llama2,包含yml配置、Bean注入及动态调用代码片段。三种方案均支持通过REST API参数切换模型,开发者可根据
2025-06-23 08:48:13
684
原创 如何在Spring AI中配置大模型参数
本文介绍了在 Spring AI 中配置大模型(如 OpenAI、Gemini 等)的两种方式: AiClient 适用于单次请求-响应场景,配置简单,仅需 API 密钥和模型参数即可使用。 ChatClient 支持多轮对话、流式响应和函数调用,需配置对话专用模型(如 GPT-4 Turbo)。 此外还提供了: 多模型配置示例(Gemini、Llama2 本地部署) 高级功能(动态参数、多模型切换、函数调用)
2025-06-22 17:12:58
438
原创 Spring-AI中ChatClient 和 AiClient的使用区别
Spring AI框架中,AiClient和ChatClient是两类接口,分别适用于不同AI交互场景。 AiClient:提供基础单次请求(generate()),返回AiResponse,适用于翻译、摘要等独立任务,无上下文管理。 ChatClient:支持多轮对话、流式响应和上下文管理(如历史消息),返回ChatResponse,适合聊天机器人等复杂交互。 选择建议:单次任务用AiClient;需上下文或流式响应时选ChatClient。
2025-06-22 14:29:29
343
原创 开启智能体与大模型的开发:如何离线部署dify(亲测可用)
Dify是一款开源的大语言模型(LLM) 应用开发平台。它融合了后端即服务(Backend as Service)和 LLMOps的理念,使开发者可以快速搭建生产级的生成式 AI 应用。即使你是非技术人员,也能参与到 AI 应用的定义和数据运营过程中
2025-06-13 15:16:08
1063
原创 如何选择正确的团队交互模式:协作、服务还是促进?
分析不同团队间的协作(Collaboration)、服务(Service)、促进(Facilitation)交互模式,可以采用多种成熟的方法论和框架
2025-06-06 15:27:31
526
原创 如何在linux系统使用rpm安装zip与unzip
在 Linux 系统上使用 rpm 命令安装 zip 和 unzip需要手动下载 RPM 包并安装,适用于 RHEL、CentOS、Fedora 等基于 RPM 的发行版。以下是详细步骤
2025-06-03 14:20:24
500
原创 特征工程中之八:语义分析和大规模文本数据处理系统库Gensim
Gensim 是一个专注于非监督文本建模的 Python 库,尤其擅长处理大规模文本数据的语义分析任务
2025-05-29 15:47:56
540
原创 特征工程中之七:点积的定义与核心作用
通过点积,可以灵活地将复杂对象(文本、图像等)转换为可计算的相似性指标或组合特征,从而支撑后续的机器学习任务。
2025-05-29 14:20:16
324
原创 系统研发进阶:如何构建系统化的技术管理知识体系
如何构建系统化的技术管理知识体系需要经典理论与前沿实践相结合,需要从技术深度到管理高度的全维度知识,完成从技术根基与架构设计、工程管理与效能提升、技术领导力与决策、前沿技术管理、知识体系构建方法论五个维度的提升
2025-05-22 17:11:27
604
原创 创建信任所有证书的HttpClient:Java 实现 HTTPS 接口调用,等效于curl -k
在 Java 生态中,HttpClient和 Feign 都是调用第三方接口的常用工具,但它们的定位、设计理念和使用场景有显著差异。
2025-05-22 09:30:30
673
原创 特征工程六-2:特征转换中的线性判别分析(LDA)
线性判别分析(LDA,Linear Discriminant Analysis)是一种监督学习的降维和分类方法,旨在找到能够最大化类间差异且最小化类内差异的特征投影方向
2025-05-16 10:58:59
699
原创 特征工程六-1:特征转换中的主成分分析PCA
主成分分析(PCA,Principal Component Analysis)是一种常用的降维和数据特征提取方法,通过线性变换将原始数据映射到低维空间,同时保留数据的主要变异信息
2025-05-16 09:21:33
491
原创 同类多源数据根据优先级筛选:分组(Grouping)与规约(Reduction)联合使用
分组(Grouping)与规约(Reduction)联合使用是Java Stream API中非常强大的功能组合,能够高效处理复杂的数据聚合需求。下面我将详细介绍典型应用场景和实现方式。
2025-05-09 14:50:33
430
转载 java使用ProcessBuilder执行linux命令
ProcessBuilder 是 Java 中用于创建和管理操作系统进程的类,位于 java.lang 包中。与传统的 Runtime.exec() 方法相比,ProcessBuilder 提供了更细粒度的控制(如环境变量、工作目录、输入/输出重定向等)
2025-05-07 15:42:31
181
原创 特征工程四-2:使用GridSearchCV 进行超参数网格搜索(Hyperparameter Tuning)的用途
多数情况下,超参数的选择是无限的,因此在有限的时间内,除了可以验证人工预设的几种超参数组合外,也可以通过启发式的搜索方法对组合进行调优,这种超参数搜素的方法称为 网格搜索。
2025-04-29 17:36:36
720
原创 特征工程四:数据特征提取TfidfVectorizer的使用
TfidfVectorizer 是 scikit-learn 中用于文本特征提取的核心工具,它将原始文本转换为 TF-IDF 特征矩阵,是自然语言处理(NLP)和文本挖掘的基础组件
2025-04-27 16:33:21
1114
原创 特征工程三:数据特征之词干提取器(stemmer)
SnowballStemmer(雪球词干提取器)是自然语言处理(NLP)中用于词形归并的核心工具
2025-04-27 15:52:23
413
原创 特征工程二:为什么要在特征工程中使用Pipeline
Pipeline 是 scikit-learn 中用于顺序执行多个数据处理和建模步骤的工具。它会将输入数据逐步传递给每个步骤,前一个步骤的输出作为下一个步骤的输入,最终输出处理后的数据或模型预测结果
2025-04-17 19:05:36
437
原创 特征工程一:Z分数标准化与行均一化
在数据处理和机器学习中,Z分数标准化(Z-Score Normalization)和 行均一化(Row Normalization) 是两种常见的归一化方法,但它们的计算方式和应用场景不同。
2025-04-17 16:50:22
514
原创 ApacheTika类型解析:透过后缀的文件类型检测方式
Apache Tika 是一个开源的 内容类型检测和内容提取工具库,由 Apache 软件基金会维护。它能够自动识别和解析上千种文件格式(如文档、图像、音频、视频等),并从中提取结构化文本和元数据
2025-04-03 15:00:49
597
转载 什么是向量数据库,在大模型中的应用
随着大模型应用的深化,向量数据库正在成为连接非结构化数据与智能应用的核心枢纽。在实际落地时,常用来:用户提问 → 向量化 → 向量库检索 → 拼接上下文 → 大模型生成回答
2025-03-24 15:28:45
411
原创 prompt工程一:如何编写高效提示词
提示词是用户与大模型交互的核心工具,通过精准设计可引导输出方向(如角色设定)、激活相关知识并调节生成行为(如链式推理)。其质量直接影响结果的准确性与规范性,使提示工程成为优化模型性能的关键技术。然而,效果受文化语境、语言歧义及模型偏见的制约。未来,自适应提示技术将深化人机协作,成为释放大模型潜能的“隐形控制器”。
2025-03-19 17:21:22
319
原创 简单的数据库分级分类算法模型实现
在数据库管理中,分级分类算法模型可以用于对数据进行分类和分级,以便更好地管理和保护数据。以下是一个基于深度学习的数据库分级分类算法模型的示例,使用 Python 和 TensorFlow/Keras 实现。首先,我们需要准备数据。假设我们有一个包含数据库表及其分类标签的数据集。每个表有一组特征(如列数、行数、数据类型等),并且每个表都有一个分类标签(如“敏感数据”、“非敏感数据”等)。2. 构建模型接下来,我们构建一个简单的神经网络模型来进行分类。3. 训练模型使用训练数据来训练模型。4. 评估模
2025-03-03 09:24:25
439
原创 清华大学关于deepseek的使用介绍
下载地址https://download.csdn.net/download/qq_37713191/90361723
2025-02-10 11:41:47
604
vector-database (向量数据库)
2025-06-12
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人