构建数据血缘(Data Lineage)是数据治理中最具挑战性也最价值的部分之一。下文描述的是一个详细、可落地的数据血缘技术架构。
数据血缘架构设计目标
- 自动化: 尽可能自动采集,减少人工维护。
- 准确性: 血缘关系必须真实可靠,才能用于影响分析和根因追溯。
- 细粒度: 从表级别深入到字段级别(Field-Level Lineage)。
- 可视化: 提供清晰、可交互的血缘图谱,支持向上追溯(Lineage)和向下影响分析(Impact Analysis)。
- 多引擎支持: 覆盖 SQL、ETL工具、编程模型(Spark/Flink代码)等多种计算引擎。
数据血缘技术架构全景
下图展示了数据血缘系统的核心组件与数据流:
核心组件与技术选型详解
1. 血缘采集层 (Lineage Collection Layer)
这是整个架构的基础,负责从各种数据加工环节提取血缘信息。
- a. 基于SQL解析(批处理任务)
- 技术: ANTLR (Another Tool for Language Recognition)
- 原理: 使用ANTLR定义SQL语法(Hive