数据治理中的数据血缘构建

构建数据血缘(Data Lineage)是数据治理中最具挑战性也最价值的部分之一。下文描述的是一个详细、可落地的数据血缘技术架构。

数据血缘架构设计目标

  • 自动化: 尽可能自动采集,减少人工维护。
  • 准确性: 血缘关系必须真实可靠,才能用于影响分析和根因追溯。
  • 细粒度: 从表级别深入到字段级别(Field-Level Lineage)。
  • 可视化: 提供清晰、可交互的血缘图谱,支持向上追溯(Lineage)和向下影响分析(Impact Analysis)。
  • 多引擎支持: 覆盖 SQL、ETL工具、编程模型(Spark/Flink代码)等多种计算引擎。

数据血缘技术架构全景

下图展示了数据血缘系统的核心组件与数据流:

在这里插入图片描述

核心组件与技术选型详解

1. 血缘采集层 (Lineage Collection Layer)

这是整个架构的基础,负责从各种数据加工环节提取血缘信息。

  • a. 基于SQL解析(批处理任务)
    • 技术: ANTLR (Another Tool for Language Recognition)
    • 原理: 使用ANTLR定义SQL语法(Hive
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值