Video-based-ReID_TP

前言

接下来,我们就来看看视频行人重识别训练模型的其中一种temporal aggregation method:temporal pooling。
这是比较简单的一种方式,效果也不错,是将通过CNN网络提取到的每一帧T图像特征根据seq_len,使用average pooling融合成每一个clips的特征。
如A部分:
在这里插入图片描述

模型输入

  • imgs
    • imgs.size() = [b,s,c,h,w]
    • 在训练级中 b为batch通常设置为32,seq_len设置为4,c为通道数为3,h图片高,w图片宽

模型初始化参数

        model = models.init_model(name=args.arch, num_classes=dataset.num_train_pids, loss={
   
   'xent', 'htri'})
  • name 使用的模型名称
  • dataset.num_train_pids 分类时的分类数
  • loss xent=交叉熵损失 htri=Tripletloss

模型实现

class ResNet50TP(nn.Module):
    def __init__(self, num_classes, loss={
   
   'xent'}, **</
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值