Decoder-Only、Encoder-Only、Encoder-Decoder 区别

Decoder-Only、Encoder-Only 和 Encoder-Decoder 是三种常见的神经网络架构,主要用于自然语言处理(NLP)任务。它们在结构和应用上有显著的区别。

1. Decoder-Only 架构
描述: 仅包含解码器部分,没有编码器。
应用: 通常用于生成任务,如语言模型和对话系统。
代表模型: GPT(Generative Pre-trained Transformer)
特点:

  • 自回归生成: 模型通过预测下一个单词来生成文本。
  • 输入和输出共享同一套嵌入: 输入序列和生成的输出序列都被视为同一过程的一部分。
  • 单向注意力机制: 只能看到之前的词,而不能看到后面的词(单向注意力)。
    示例:在 GPT 模型中,输入序列 “The cat is on the” 会生成输出 “mat”。

2. Encoder-Only 架构
描述: 仅包含编码器部分,没有解码器。
应用: 通常用于理解任务,如文本分类和情感分析。
代表模型: BERT(Bidirectional Encoder Representations from Transformers)
特点:

  • 双向注意力机制: 能同时关注序列中的前后词语,从而获得更丰富的上下文信息。
  • 适用于句子级别和文档级别的任务: 通过对整个输入序列进行编码来捕捉其含义。
  • 掩码语言模型: 使用掩码语言模型(Masked Language Model,MLM)进行训练,即随机遮掩输入序列中的一些词,并预测这些词。
    示例:在 BERT 模型中,输入句子 “The cat is on the [MASK]” 可能会预测出 “[MASK]” 为 “mat”。

3. Encoder-Decoder 架构
描述: 同时包含编码器和解码器部分。
应用: 通常用于序列到序列(seq2seq)任务,如机器翻译和文本摘要。<

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值