基于QC-LDPC的CDR系统LDPC编码实现与matlab仿真验证

273 篇文章 ¥99.90 ¥299.90
219 篇文章 ¥99.90 ¥299.90
本文详细介绍了如何在CDR系统中使用QC-LDPC码进行编码和解码,并通过matlab进行仿真验证。内容包括QC-LDPC码的概念、生成基础矩阵、编码、解码的具体实现步骤,以及通过添加高斯白噪声进行信道模拟和比特误码率分析,以评估系统性能。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

基于QC-LDPC的CDR系统LDPC编码实现与matlab仿真验证

CDR,即Coherent Detection and Receivers,是一种光通信系统中常见的接收方式。在这种接收方式下,需要对接收到的信号进行解调和译码,其中译码环节中的LDPC(Low Density Parity Check)码是一种广泛应用的解码码率逼近容量极限的码型。本文将介绍基于QC-LDPC的CDR系统LDPC编码实现与matlab仿真验证的过程。

一、QC-LDPC码的概念

QC-LDPC码指的是Quasi-Cyclic LDPC码,它是一种特殊的LDPC码,具有特殊的分块形式。QC-LDPC码的矩阵表示可以通过一个置换矩阵和一个基础矩阵的乘积得到,其中基础矩阵满足以下两个性质:

1.每一行均具有相同的重量。

2.每一列均为一个右移相同次数的向量循环移位后得到的结果。

由于QC-LDPC码相比其他LDPC码,其编码和解码的效率更高,所需的计算复杂度更小,因此被广泛应用在通信领域中。

二、实现过程

1.生成基础矩阵

我们可以通过matlab自带的函数“dvbs2ldpc”来生成QC-LDPC码的基础矩阵,其中需要输入的参数为码长和码率。例如,如果我们需要实现一个128 × 256的LDPC编码器,其码率为1/2,则可以通过下面的代码来生成基础矩阵。

m = 128;
n = 256;
rate = 1/2;
[H, G] = dvbs2ldpc(m,n,rate);

其中,H为校验矩阵,G为生成矩阵。在这里,我们只需要使用到生成矩阵。

2.实现编码

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

代码编织匠人

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值