DP斜率优化

DP斜率优化是一种利用单调队列和二分查找优化动态规划算法的方法,适用于状态转移方程与dp[i]和dp[j]呈线性关系的问题。通过维护凸包的下凸壳,寻找与dp[j]相切的最优转移点,从而降低时间复杂度。文中通过不同难度的例题,逐步解析了如何应用斜率优化解决任务安排问题,包括费用提前计算思想和处理非单调情况的策略。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

DP斜率优化

  DP斜率优化,实际上就是以斜率作为比较的基准,使用单调队列优化的方法,使用斜率优化的问题应当具有这样的特征——状态转移方程是一个关于dp[i]和dp[j]的线性方程,也即dp[i]与dp[j]具有线性关系。
  这样我们在求解dp[i]时,实际上就是求解一个点(dp[j],j),使得过该点的dp[i]的值最小,由于斜率是固定的,这导致我们只需要寻找与dp[j]的点形成的凸包相切的那一点作为最优转移点即可,实际求解过程中,我们只需要用单调队列维持边界上的点,再用二分查找的方式确定相切的点即可。
  这样描述还是比较抽象的,我们以实际例题说明吧。

例题

任务安排1
  这道题的数据量,我们只要设计出时间复杂度为N^2的即可满足条件。
  写出朴素的状态转移方程我们发现,其时间复杂度是O(N^3)的,主要原因在于我们需要保存两个维度的信息,其中一个维度是用来表示当前已经分成的段数,因为每多分一段,就会多停机一次,会对后续结果产生影响。
  而我们如果换个思路,在我们考虑将[j,i]的作为一个整体处理时,这一阶段的停机会对[j,n]的所有任务都附加一个s*c[k]的代价,那么这些代价我们在朴素的思想中是在求解dp[i]时集中计算的,这里我们考虑将对后面任务产生的代价都提前附加到求解dp[i]时的代价中,这在本质上是等效的,此时,我们就可以将时间复杂度降低到平方级,可以满足本题的条件。这种思想是一种名为费用提前计算的经典思想。

//做一个复杂DP问题时,先写朴素方法,后优化
//本题中用到的信息有分段数以及任务数,所以dp定义为两维即可表述所有信息
#include<bits/stdc++.h>
using namespace std;

int n,s;
int t[5001];
int c[5001];
long long sumt[5010];
long long sumc[5010];
void simple(){
   
   
    //朴素动态规划
    //当s==0时,此时我们无需考虑阶段数目,只需要直接求解最优值即可
    if(s==0){
   
   
        long long ans=0;
        //此时一定是一个任务一段最优
        for(int i=1;i<=n;i++)ans+=c[i]*sumt[i];
        cout<<ans<<endl;
        return;
    }
    long long dp[n+1][501];//表示是前i个任务分成若干个阶段后的最小费用和
    memset(dp,127,sizeof(dp));
    dp[0][0]=0;
    for(int i=1;i<=n;i++){
   
   
        for(int j=1;j<=min(i,500);j++){
   
   
            for(int k=max(j-1,i-100);k<=i-1;k++){
   
   
                dp[i][j]=min(dp[i][j],dp[k][j-1]+(sumc[i]-sumc[k])*(s*j+sumt[i]));
            }
        }
    }
    long long ans=INT_MAX;
    for(int i=1<
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值