Huggingface中DatasetDict类如何加载各种文件

本文介绍了如何使用Python的datasets库加载CSV、JSON、文本和Parquet格式的数据文件,包括`from_csv`、`from_json`、`from_text`和`from_parquet`方法,适用于SQuAD数据集的预处理。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一.加载csv文件

dataset.dataset_dict.DatasetDict.from_csv(
		# 常用的路径名字
        路径和多个路径的名字: Dict[str, PathLike],
        特征: Optional[Features] = None,
        缓存路径: str = None,
        keep_in_memory: bool = False,
    )
from datasets.dataset_dict import DatasetDict
train = DatasetDict.from_csv({'train': 'data_squad/SQuAD/train.csv'})

二.加载json文件

dataset.DatasetDict.from_json(
        path_or_paths: Dict[str, PathLike],
        features: Optional[Features] = None,
        cache_dir: str = None,
        keep_in_memory: bool = False,
        **kwargs,
    )
from datasets.dataset_dict import DatasetDict
train = DatasetDict.from_json({'train': 'data_squad/SQuAD/train.json'})

三.加载text文件

dataset.DatasetDict.from_text(
path_or_paths: Dict[str, PathLike],
features: Optional[Features] = None,
cache_dir: str = None,
keep_in_memory: bool = False,
**kwargs,
)
from datasets.dataset_dict import DatasetDict
train = DatasetDict.from_text({‘train’: ‘data_squad/SQuAD/train.text’})

四.parquet文件

dataset.DatasetDict.from_parquet(
path_or_paths: Dict[str, PathLike],
features: Optional[Features] = None,
cache_dir: str = None,
keep_in_memory: bool = False,
columns: Optional[List[str]] = None,
**kwargs,
)
from datasets.dataset_dict import DatasetDict
train = DatasetDict.from_parquet({‘train’: ‘data_squad/SQuAD/train.text’})

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Algorithm_Engineer_

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值