机器学习实战-聚类分析KMEANS算法-25

这篇博客介绍了KMEANS算法在NBA球队实力和广告效果聚类分析中的应用。通过聚类,将广告媒体分为四个类别:中庸型、均衡型、潜力型和引流拉新型。均衡型广告媒体流量质量好,订单转化率高;潜力型广告媒体实例少但效果显著;引流拉新型广告媒体在日均UV和注册率上表现出色,适合大规模推广。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

KMEANS算法-NBA球队实力聚类分析

在这里插入图片描述

from sklearn.cluster import KMeans
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
from sklearn.preprocessing import MinMaxScaler
data = pd.read_csv('nba.csv')
data.head()

在这里插入图片描述

minmax_scaler = MinMaxScaler()
# 标准化数据
X = minmax_scaler.fit_transform(data.iloc[:,1:])
X[:5]

在这里插入图片描述

# 肘部法则
loss = []
for i in range(2,10):
    model = KMeans(n_clusters=i).fit(X)
    loss.append(model.inertia_)
    
plt.plot(range(2,10),loss)
plt.xlabel('k')
plt.ylabel('loss')
plt.show()

在这里插入图片描述

k = 4
model = KMeans(n_clusters=k).fit(X)

# 将标签整合到原始数据上
data['clusters'] = model.labels_

data.head()

在这里插入图片描述

for i in range(k):
    print
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值