机器学习实战-PCA算法-26

本文探讨了PCA算法在手写数字识别领域的应用,通过降维可视化技术展示了PCA如何降低高维数据复杂性,并进行了手写数字降维预测的实践。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

PCA算法-手写数字降维可视化

from sklearn.neural_network import MLPClassifier
from sklearn.datasets import load_digits
from sklearn.model_selection import train_test_split
from sklearn.metrics import classification_report,confusion_matrix
import numpy as np
import matplotlib.pyplot as plt
digits = load_digits()#载入数据
x_data = digits.data #数据
y_data = digits.target #标签

x_train,x_test,y_train,y_test = train_test_split(x_data,y_data) #分割数据1/4为测试数据,3/4为训练数据

在这里插入图片描述

mlp = MLPClassifier(hidden_layer_sizes=(100,50) ,max_iter=500)
mlp.fit(x_train,y_train)

在这里插入图片描述

# 数据中心化
def zeroMean(dataMat):
    # 按列求平均,即各个特征的平均
    meanVal = np.mean(dataMat, axis=0) 
    newData = dataMat - meanVal
    return newData, meanVal

def pca(dataMat,top):
    # 数据中心化
    newData,meanVal=zeroMean(dataMat) 
    # np.cov用于求协方差矩阵,参数rowvar=0说明数据一行代表一个样本
    covMat = np.cov(newData, rowvar=0
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值