python实现 逻辑回归(Logistic Regression)算法

该博客介绍了如何使用Python实现逻辑回归算法,包括实验原理、实验数据来源(UCI Machine Learning Repository的Ecoli Data Set)、代码实现和分析,以及实验结果展示。通过50次迭代,展示了权值和分割线的变化,表明逻辑回归在处理二分类问题时有较好的分类效果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1. 实验原理

可参考下面这篇博文,讲的蛮清楚的

逻辑回归(logistic regression)原理详解_guoziqing506的博客-CSDN博客_逻辑回归原理

2. 实验数据

数据来源:UCI Machine Learning Repository: Ecoli Data Set

(因为是二分类问题,实际使用时只留下了两类数据,并把分类结果置为0或1,这里需要手动修改,比如把类别cp置为0,im置为1,否则会报评论区出现的错误

3. 代码实现

import numpy as np
from numpy import mat
import matplotlib.pyplot as plt
from sklearn.decomposition import PCA

picCount = 1

def drawing(data, weight):
    global picCount
    plt.scatter(data[0:77, 1].tolist(), data[0:77, 2].tolist(), c='r', 
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值