1. 实验原理
可参考下面这篇博文,讲的蛮清楚的
逻辑回归(logistic regression)原理详解_guoziqing506的博客-CSDN博客_逻辑回归原理
2. 实验数据
数据来源:UCI Machine Learning Repository: Ecoli Data Set
(因为是二分类问题,实际使用时只留下了两类数据,并把分类结果置为0或1,这里需要手动修改,比如把类别cp置为0,im置为1,否则会报评论区出现的错误)
3. 代码实现
import numpy as np
from numpy import mat
import matplotlib.pyplot as plt
from sklearn.decomposition import PCA
picCount = 1
def drawing(data, weight):
global picCount
plt.scatter(data[0:77, 1].tolist(), data[0:77, 2].tolist(), c='r',