leetcode最大正方形

本文介绍了一种使用动态规划解决矩阵中寻找最大正方形边长的问题,通过遍历矩阵并利用dp数组记录以每个元素为右下角的最大正方形边长,最终找到全局最大值。文章还提到了一种优化方案,将空间复杂度降低到O(n)。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1.动态规划

设矩阵的长宽为m,n,dp[m+1][n+1],

其中dp[i][j]表示以(i-1,j-1)为右下方元素的最大正方形的边长,初始dp全为0

遍历矩阵中每一个元素,若matrix(i,j)=0,则跳过

若matrix(i,j)不为0,则dp[i][j]的值由dp[i-1][j-1] dp[i-1][j]  dp[i][j-1]的最小值决定

有两种情况:

1)dp[i-1][j-1] dp[i-1][j]  dp[i][j-1]中至少有一个值为0,说明矩阵中对应位置为0,则以(i,j)为右下方的正方形边长为1

2)dp[i-1][j-1] dp[i-1][j]  dp[i][j-1]的值都不为0,则dp[i][j]的值为dp[i-1][j-1] dp[i-1][j]  dp[i][j-1]的最小值+1

代码如下:

class Solution {
public:
    int maximalSquare(vector<vector<char>>& matrix) {
        //dp[i][j]表示以(i,j)为右下角能构成的最大正方形边长
      int m=matrix.size();
       if(m<1)
        return 0;
      int n=matrix[0].size();
      vector<vector<int>> dp(m+1,vector<int>(n+1,0));
      int imax=0;
      for(int i=1;i<=m;i++)
        for(int j=1;j<=n;j++)
        {
            if(matrix[i-1][j-1]=='1')
             dp[i][j]=min(min(dp[i-1][j-1],dp[i-1][j]),dp[i][j-1])+1;
             imax=max(imax,dp[i][j]);
        }
        return imax*imax;
    }
};

还可以继续优化,使用O(n)的空间复杂度

2.优化

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值