一、引言
眼底血管图像分割在医学领域具有举足轻重的地位,为医生诊断多种疾病提供了强有力的辅助手段。眼底视网膜血管作为人体内唯一可通过非创伤性手段直接观察的深层微血管系统,其分布、结构及形态特征的改变能在一定程度上反映病变的程度。诸如白血病、糖尿病及高血压等疾病,均可能引发眼科并发症,而眼底图像分析正是诊断这些眼部疾病的关键方法之一。医学图像分割在图像处理流程中扮演着核心角色,其分割效果对后续的图像处理乃至整个医疗流程均产生深远影响。因此,眼底图像处理在医学领域内应用广泛,尤其在辅助眼科眼底病变的诊断与治疗方面发挥着重要作用。
然而,眼底血管图像分割技术目前仍面临诸多挑战。一方面,采集到的眼底图像常伴随噪声大、血管与背景对比度低、中间明亮四周暗淡等特点,导致血管分割不完全。另一方面,视网膜血管树的断点问题在基于深度卷积网络的视网膜血管分割方法中普遍存在,且未得到足够重视。此外,视网膜血管尺度变化显著,包含极其微小的毛细血管,其最小直径仅1至2个像素宽,对比度相较于主要动脉和静脉更低;血管结构复杂,存在分叉、交叉等形态;部分血管还可能出现微动脉瘤、渗出物等病变,这些都进一步增加了分割的难度。
尽管如此,随着技术的持续进步,眼底血管图像分割领域也取得了显著的研究成果。例如,有研究针对彩色眼底图像,先进行预处理,再对比多种血管分割技术,最终选定一种效果最佳的分割技术来实现眼底图像血管分割。具体而言,该研究在彩色眼底图像处理的分量选择上,对RGB和HSI两个颜色空间的各分量进行了参数统计,发现HSI颜色空间中的I分量在眼底图像处理中具有较高的信噪比和良好的鲁棒性,适合后续的图像处理。在预处理算法的选择上,采用融合矢量中值滤波的NSCT降噪算法进行眼底图像降噪,并使用LMLSD算法进行效果评估,实验结果显示该算法处理效果最为显著,图像信噪比相较于原图像平均提高了约8.50倍。在眼底血管分割研究中,结合彩色图像各分量的调研结果,运用迭代式阈值分割和OTSU阈值分割两种方法进行血管分割。实验表明,对HSI空间中的I分量进行三次高低帽增强后,再使用OTSU阈值分割方法得到的血管分割结果更佳,能够确保眼底图像血管分割的完整性和准确性,达到辅助临床诊断的目的。
此外,还有研究以三层U-