POJ 2893 M × N Puzzle(进阶指南,逆序数,归并排序)

该篇博客详细介绍了POJ 2893算法竞赛问题,涉及M×N矩阵中的数字排列。主要内容包括根据列数奇偶性进行分类讨论,探讨序列逆序数与实际位置逆序数的奇偶性关系,以及如何利用归并排序计算逆序数。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

算法竞赛进阶指南,38 页, 排序, 归并求逆序数
题目意思:
给出一个 n * m 的矩阵,数字 1 ~ (n * m -1) 这 n * m -1 个数字放在这个矩阵中,有一个是空格;
交换每个空格和数字,看看能不能使得空格放在最后一个位置,其余的每个数字,放在相应的地方。
本题要点:
1、 根据列数的奇偶性,分类讨论:
a)列数m是 奇数, 结论同 CH_0503 一样, 序列的逆序数 s 和 每个数都放在相应的位置的逆序数(值为0) 的奇偶性一样
b)列数m是 偶数,
1)序列逆序数之差;
2)两个局面的空格所在的行号之差;
这两个差值的奇偶性一样;
2、归并排序求逆序数

#include <cstdio>
#include <cstring>
#include <cstdlib>
#include <iostream>
using namespace std;
const int MaxN = 1010;
int g1[MaxN][MaxN];
int n, m, cnt;
int a[MaxN * MaxN], b[MaxN * MaxN];

void merge(int L, int mid, int R)
{
	int i = L, j = mid + 1;
	for(int k = L; k <= R; ++k)
	{
		if(j > R || (i <= mid && a[i] <= a[j]))
		{
			b[k] = a[i++];
		}else{
			b[k] = a[j++], cnt += mid - i + 1;
		}
	}
	for(int k = L; k <= R; ++k)
	{
		a[k] = b[k];
	}
}

void mergeSort(int L, int R)
{
	if(L < R)
	{
		int mid = (L + R) / 2;
		mergeSort(L, mid);
		mergeSort(mid + 1, R);
		merge(L, mid, R);
	}
}

void solve()
{
	int num = 0, s1 = 0;	// s1 是这个数组的逆序数
	int row1 = 0;	//row 是这个数组的空额所在好的行
	for(int i = 1; i <= n; ++i)
		for(int j = 1; j <= m; ++j)
		{
			if(g1[i][j] != 0)
			{
				a[++num] = g1[i][j];
			}else{
				row1 = i;
			}
		}
	cnt = 0;
	mergeSort(1, num);
	s1 = cnt;
	int s2 = 0, row2 = n;	// s2 是这个矩阵的每个位置,移动到相对应的位置的时候的逆序数
	int flag = 0;
	if((m & 1) == 0)		//列数是偶数
	{
		flag = abs(row1 - row2);
	}
	if(abs(abs(s1 - s2) - flag) & 1)	//奇偶性不同
	{
		printf("NO\n");
	}else{
		printf("YES\n");
	}
}

int main()
{
	while(scanf("%d%d", &n, &m) != EOF && n)
	{
		for(int i = 1; i <= n; ++i)
			for(int j = 1; j <= m; ++j)
			{
				scanf("%d", &g1[i][j]);
			}
		solve();
	}
	return 0;
}

/*
3 3
1 0 3
4 2 5
7 8 6
4 3
1 2 5
4 6 9
11 8 10
3 7 0
0 0
*/

/*
YES
NO
*/

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值