算法竞赛进阶指南,38 页, 排序, 归并求逆序数
题目意思:
给出一个 n * m 的矩阵,数字 1 ~ (n * m -1) 这 n * m -1 个数字放在这个矩阵中,有一个是空格;
交换每个空格和数字,看看能不能使得空格放在最后一个位置,其余的每个数字,放在相应的地方。
本题要点:
1、 根据列数的奇偶性,分类讨论:
a)列数m是 奇数, 结论同 CH_0503 一样, 序列的逆序数 s 和 每个数都放在相应的位置的逆序数(值为0) 的奇偶性一样
b)列数m是 偶数,
1)序列逆序数之差;
2)两个局面的空格所在的行号之差;
这两个差值的奇偶性一样;
2、归并排序求逆序数
#include <cstdio>
#include <cstring>
#include <cstdlib>
#include <iostream>
using namespace std;
const int MaxN = 1010;
int g1[MaxN][MaxN];
int n, m, cnt;
int a[MaxN * MaxN], b[MaxN * MaxN];
void merge(int L, int mid, int R)
{
int i = L, j = mid + 1;
for(int k = L; k <= R; ++k)
{
if(j > R || (i <= mid && a[i] <= a[j]))
{
b[k] = a[i++];
}else{
b[k] = a[j++], cnt += mid - i + 1;
}
}
for(int k = L; k <= R; ++k)
{
a[k] = b[k];
}
}
void mergeSort(int L, int R)
{
if(L < R)
{
int mid = (L + R) / 2;
mergeSort(L, mid);
mergeSort(mid + 1, R);
merge(L, mid, R);
}
}
void solve()
{
int num = 0, s1 = 0; // s1 是这个数组的逆序数
int row1 = 0; //row 是这个数组的空额所在好的行
for(int i = 1; i <= n; ++i)
for(int j = 1; j <= m; ++j)
{
if(g1[i][j] != 0)
{
a[++num] = g1[i][j];
}else{
row1 = i;
}
}
cnt = 0;
mergeSort(1, num);
s1 = cnt;
int s2 = 0, row2 = n; // s2 是这个矩阵的每个位置,移动到相对应的位置的时候的逆序数
int flag = 0;
if((m & 1) == 0) //列数是偶数
{
flag = abs(row1 - row2);
}
if(abs(abs(s1 - s2) - flag) & 1) //奇偶性不同
{
printf("NO\n");
}else{
printf("YES\n");
}
}
int main()
{
while(scanf("%d%d", &n, &m) != EOF && n)
{
for(int i = 1; i <= n; ++i)
for(int j = 1; j <= m; ++j)
{
scanf("%d", &g1[i][j]);
}
solve();
}
return 0;
}
/*
3 3
1 0 3
4 2 5
7 8 6
4 3
1 2 5
4 6 9
11 8 10
3 7 0
0 0
*/
/*
YES
NO
*/