53.最大子序和Maximum Subarray(LeetCode)

本文介绍了一种寻找具有最大和的连续子数组的方法,并提供了两种解决方案:动态规划法和分治法。动态规划法时间复杂度为O(n),而分治法则具有O(NlogN)的时间复杂度。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

问题

给定一个整数数组 nums ,找到一个具有最大和的连续子数组(子数组最少包含一个元素),返回其最大和。

示例:

输入: [-2,1,-3,4,-1,2,1,-5,4],
输出: 6
解释: 连续子数组 [4,-1,2,1] 的和最大,为 6。

进阶:

如果你已经实现复杂度为 O(n) 的解法,尝试使用更为精妙的分治法求解。

解答

动态规划方法,时间复杂度为 O(n)

class Solution {
    public int maxSubArray(int[] nums) {
        int sum = nums[0];
        int []t = new int [nums.length];
        t[0] = nums[0];
        int start=0,temp=0,end=0;
        for(int i=1;i<nums.length;i++){
            if(t[i-1] > 0){
                t[i] = t[i-1] + nums[i];
            }else{
                t[i] = nums[i];
                temp = i;
            }
            if(sum < t[i]){
                sum = t[i];
                start = temp;
                end = i;
            }
        }
        return sum;
    }
}

分治法 [未验证]

时间复杂度为 O(NlogN)

private static int maxSubArray(int [] a , int left , int right){
  if( left == right ){//边界①
    if( a[left] > 0 )
      return a[left];
    else
      return 0;
  }
  int center = (left + right) / 2;
  int maxLeftSum = maxSubArray( a, left, center);
  int maxRightSum = maxSubArray( a, center + 1, right);

  int maxLeftBorderSum = 0, leftBorderSum = 0;
  for( int i = center; i >= left; i--){
    leftBorder += a[i];
    if( maxLeftBorderSum < leftBorderSum)
      maxLeftBorderSum = leftBorderSum;
  }
  
  int maxRightBorderSum = 0, rightBorderSum = 0;
  for( int i = center + 1; i <= right; i ++){
    rightBorderSum += a[i];
    if( maxRightBorderSum > rightBorderSum)
      maxRightBorderSum = rightBorderSum;
  }
  return max( maxRightBorderSum + maxLeftBorderSum , 
  maxLeftSum , maxRightSum);
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Antrn

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值