大家好,我是『K同学啊』!
今天我将带大家探索一下深度学习在医学领域的应用–脑肿瘤识别,脑肿瘤也称为颅内肿瘤,是颅内占位性病变的主要疾病,在儿童易患的恶性病变中仅次于白血病,位于第二位。有数据表明,我国每年新增儿童脑瘤患者7000~8000名,其中70%~80%的患儿肿瘤呈恶性。由于脑肿瘤患者年龄越小,发病速度越快,肿瘤恶性程度越高,所以早期发现。治疗成为降低疾病危害的重要方式之一。
这次我们一共用到了253张脑部扫描图片数据,其中患有脑肿瘤的患者脑部扫描图片155张,正常人的脑部扫描图片98张。使用的算法为MobileNetV2,最后的识别准确率是90.0%,AUC值为0.869。
本次的重点: 相对于《深度学习100例》以往的案例,本次我们将加入AUC评价指标来评估脑肿瘤识别的识别效果,AUC(Area under the Curve of ROC)是ROC曲线下方的面积,是判断二分类预测模型优劣的标准。
🚀 我的环境:
- 语言环境:Python3.6.5
- 编译器:jupyter notebook
- 深度学习环境:TensorFlow2.4.1
- 显卡(GPU):NVIDIA GeForce RTX 3080
- 数据:📌【传送门】
🚀 本文选自专栏:《深度学习100例》
🚀 深度学习新人必看:《小白入门深度学习》