深度学习100例 | 第35天:脑肿瘤识别

大家好,我是『K同学啊』!

今天我将带大家探索一下深度学习在医学领域的应用–脑肿瘤识别,脑肿瘤也称为颅内肿瘤,是颅内占位性病变的主要疾病,在儿童易患的恶性病变中仅次于白血病,位于第二位。有数据表明,我国每年新增儿童脑瘤患者7000~8000名,其中70%~80%的患儿肿瘤呈恶性。由于脑肿瘤患者年龄越小,发病速度越快,肿瘤恶性程度越高,所以早期发现。治疗成为降低疾病危害的重要方式之一。

这次我们一共用到了253张脑部扫描图片数据,其中患有脑肿瘤的患者脑部扫描图片155张,正常人的脑部扫描图片98张。使用的算法为MobileNetV2,最后的识别准确率是90.0%,AUC值为0.869

本次的重点: 相对于《深度学习100例》以往的案例,本次我们将加入AUC评价指标来评估脑肿瘤识别的识别效果,AUC(Area under the Curve of ROC)是ROC曲线下方的面积,是判断二分类预测模型优劣的标准。

🚀 我的环境:

  • 语言环境:Python3.6.5
  • 编译器:jupyter notebook
  • 深度学习环境:TensorFlow2.4.1
  • 显卡(GPU):NVIDIA GeForce RTX 3080
  • 数据:📌【传送门】

🚀 本文选自专栏:《深度学习100例》

🚀 深度学习新人必看:《小白入门深度学习》

  1. 小白入门深度学习 | 第一篇:配置深度学习环境
  2. 小白入门深度学习 | 第二篇:编译器的使用-Jupyter Notebook
  3. 小白入门深度学习 | 第三篇:深度学习初体验
评论 13
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

K同学啊

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值