Pytorch入门实战 | 第P8周:YOLOv5-C3模块实现

11 篇文章 ¥29.90 ¥99.00
本文通过YOLOv5中的C3模块,详细讲解如何在Pytorch中搭建模型,并进行训练和结果可视化。内容涵盖环境配置、数据处理、模型构建、训练过程以及模型评估。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

**本次我将利用YOLOv5算法中的C3模块搭建网络,主要让大家先了解C3的结构,方便后续YOLOv5算法的学习。

🏡 我的环境:

  • 语言环境:Python3.8
  • 编译器:Jupyter Lab
  • 数据集:天气识别数据集
  • 深度学习环境:Pytorch
    • torch==1.12.1+cu113
    • torchvision==0.13.1+cu113

一、 前期准备

1. 设置GPU

如果设备上支持GPU就使用GPU,否则使用CPU

import torch
import torch.nn as nn
import torchvision.transforms as transforms
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

K同学啊

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值