
CNN
沐雨金鳞
大行不顾细谨
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
池化方法和卷积方法的分类
深度学习之池化方法(pooling) 形象理解深度学习中八大类型卷积原创 2019-12-29 15:20:08 · 347 阅读 · 0 评论 -
为什么卷积核通常都是奇数(1x1、3x3...)
使用小的卷积核代替大卷积核的目的有两个,第一,降低参数数量,第二,顺带的效果是增加了网络深度。 1,为了方便same padding时的处理。如步长为1时,要补充k-1的zero padding才能使输出输出的尺寸一致,这时候如果核大小k是偶数,则需要补充奇数的zero padding,不能平均分到feature map的两侧。 padding时对称:保证了 padding 时,图像的两边依然...原创 2019-12-28 11:07:35 · 3155 阅读 · 0 评论 -
调参技巧
转自调参技巧 网络能深则深。宽度小时,尽可能加深网络深度,并在加深的过程中增大网络宽度。 使用小卷积核。小卷积核有利于网络走向更深,具有更好的识别鲁棒性。 前面几层下采样的频率高一点,中间层下采样频率降低,并使用不下采样的方法提高深度。前面几层下采样密度大:微弱精度损失换取速度提升。最终能够下采样的最大深度的层的感受野,由数据集中最大有意义物体的尺寸决定,最大感受野应该覆盖数据集中最大有意义...转载 2019-12-28 10:09:37 · 357 阅读 · 0 评论 -
上采样、下采样(卷积、转置卷积)图片输出大小计算公式
输出图像大小 = (输入图片大小 - 卷积核大小 + 2*padding)/ stride步长 + 1 如:4 = (4 - 3 + 2*1)/ 1 + 1 输出图像大小 = (输入 - 1)* stride步长 + outputpadding输出边补充0的层数 - 2 * padding + kernel_size 如:56 = (28 - 1)* 2 + 2 ...原创 2019-11-18 10:49:54 · 4927 阅读 · 0 评论 -
卷积神经网络(1:为什么会出现卷积神经网络?2:卷积神经网络的基本知识)
本文转载自: 罗翌新:中科大数学博士,深度学习医学应用专家; 廖星宇:中科大硕士,计算机视觉专家,Face++资深工程师,《深度学习之Pytorch》作者; 的深度学习理论与实战(基于TensorFlow实现) 一、为什么要使用卷积神经网络? 二、卷积核以及卷积的一些基本知识 ...转载 2019-08-27 10:37:35 · 634 阅读 · 0 评论