Windows环境关于CUDA+CUDNN的安装教程

本文详述了如何在Windows环境下安装CUDA和CUDNN,以及配置环境变量,确保PyTorch和Tensorflow能使用GPU运算。首先确定NVIDIA驱动版本,然后从NVIDIA官网下载匹配的CUDA版本,安装完成后下载并集成CUDNN。最后,通过修改环境变量,使得Python能够识别CUDA库。测试表明,CUDA和CUDNN安装成功,PyTorch和Tensorflow可利用GPU运行。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

推荐使用Anaconda+Pycharm套餐使用。

本文将介绍,如何安装pytorch与tensorflow框架

首先要知道自己的显卡驱动是哪个版本的(本机以1660S为例)

1、打开NVIDIA控制面板,可通过桌面点击鼠标右键或右下角隐藏图标栏打开

打开帮助→系统信息

 从这里可以看出驱动程序的版本是多少,有一些会在组件那里显示CUDA版本和显卡驱动的版本

我们根据NVIDIA官网驱动下载页面,根据官方推荐,选择合适的CUDA版本

我的显卡驱动程序版本为457.86,对照上表,我们可以看出,在最右栏Windows x86_64 Driver Version 我们最高可以选用456.81版本的,也就是CUDA11.1.1 Update 1

所以我们选用CUDA11.1进行安装

CUDA安装

CUDA Toolkit Archive | NVIDIA Developer

在这里点击上面链接进入,按照刚刚选择CUDA11.1,点击下载,下载方式选择local版本

下载完成后,建议安装位置默认,一切安装程序按照推荐的走,就能顺利安装完成

C:\ProgramData\NVIDIA GPU Computing Toolkit(默认位置为此)

 有一些ProgramData文件被隐藏了,所以我们需要将隐藏的项目显示出来。

 在CUDA完成之后,我们开始下载CUDNN

CUDNN需要登录账号进行下载

Log in | NVIDIA Developer

在登陆之后我们会看到,点击查看之前的CUDNN版本

 点击之后我们可以看到有多个选择,我们可以根据自己的CUDA版本选择适配的

 我们可以看到多个CUDNN版本适配,一般我们选用专用的,我选择了CUDNN v8.0.5(当然其他的也是可以的)

选择Windows版本进行下载

下载完成之后,将压缩包中的三个文件夹,复制粘贴到刚刚CUDA安装的位置 

放入此文件夹中

C:\ProgramData\NVIDIA GPU Computing Toolkit\v11.1

至此我们的CUDA以及CUDNN已经安装完成,可以进入最后一步,环境配置

环境配置

电脑右键属性→高级系统设置→环境变量→用户变量→Path→编辑环境变量

 

 

 最后将这三个文件路径加入

C:\ProgramData\NVIDIA GPU Computing Toolkit\v11.1\bin
C:\ProgramData\NVIDIA GPU Computing Toolkit\v11.1\include
C:\ProgramData\NVIDIA GPU Computing Toolkit\v11.1\lib

最后就完成了CUDA和CUDNN的安装以及环境变量的设置

最后进行测试

pytorch

在Pycharm中输入安装pytorch后测试

import torch
print(torch.__version__)
print(torch.cuda.is_available())

完成后显示True即可开始进入

Tensorflow

import tensorflow as tf
#查看tensorflow版本
print(tf.__version__)
print('GPU', tf.test.is_gpu_available())

a = tf.constant(2.0)
b = tf.constant(4.0)
print(a + b)

至此pytorch和Tensoflow都可以使用GPU进行运算了

备注:

 在我进行测试的时候发现,在pycharm中使用conda进行安装可以直接在虚拟环境中安装CUDA以及CUDNN,这样可以更加方便的进行环境配置,对应不同版本的框架,安装不同的CUDA版本。

在Pytorch官网可以直接找到相应的下载代码,可取官网进行查询。

Previous PyTorch Versions | PyTorch

选用其中一行代码,在pycharm的terminal中输入即可安装,非常的方便。

对于Tensoflow,在terminal输入下列,即可安装,以2.0.0版本为例

conda install tensorflow-gpu==2.0.0      

在使用conda安装时,可以进行换源

在C:\Users\用户名找到.condarc文件,将下列代码

channels:
  - defaults
show_channel_urls: true
channel_alias: https://mirrors.tuna.tsinghua.edu.cn/anaconda
default_channels:
  - http://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main
  - http://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free
  - http://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/r
  - http://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/pro
  - http://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/msys2
custom_channels:
  conda-forge: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud
  msys2: http://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud
  bioconda: http://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud
  menpo: http://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud
  pytorch: http://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud
  simpleitk: http://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud

全部完成

<think>嗯,用户想要在Windows系统下安装CUDA 12.8cuDNN教程。首先,我需要确认CUDA 12.8的版本是否存在。因为根据之前的引用,用户可能需要先检查显卡是否支持CUDA。不过,我记得CUDA的版本通常是逐步升级的,比如12.1、12.2等等,但12.8可能还没有发布?或者可能用户打错了版本号?比如可能是12.1或者11.8?需要先核实一下。 假设用户确实是指CUDA 12.8,但可能实际最高版本是12.x,比如12.3或者类似。或者用户可能混淆了版本号。这时候可能需要提醒用户检查NVIDIA官方网站,确认最新的CUDA版本。不过根据引用中的例子,用户提供的引用提到了CUDA工具安装命令是sudo dnf install cuda-cross-sbsa,这可能是在Linux下的安装步骤,但用户现在需要的是Windows下的教程。 接下来,用户需要安装CUDAcuDNN。根据引用3,用户需要先检查显卡型号和支持的CUDA版本。在Windows下,可以通过设备管理器或命令行查看显卡型号。比如,用户需要确认显卡是NVIDIA的,并且支持CUDA 12.8。如果显卡不支持该版本,可能需要安装更低的CUDA版本。 然后,安装CUDA的步骤通常包括:下载安装包,运行安装程序,配置环境变量。对于Windows来说,CUDA Toolkit的安装程序一般是exe文件,用户需要从NVIDIA官网下载对应版本。但CUDA 12.8可能不存在,所以需要建议用户检查官网,或者可能用户是指CUDA 12.x中的某个版本,比如12.1或12.2。 然后是cuDNN安装,这需要用户先注册NVIDIA开发者账号,下载对应CUDA版本的cuDNN,解压后将文件复制到CUDA安装目录中,并设置环境变量。这部分步骤在Windows下可能需要手动复制文件到指定位置,比如CUDA的bin、include、lib目录。 另外,用户可能需要安装Anaconda和PyTorch,如引用2提到的,所以可能需要指导用户如何在虚拟环境中配置PyTorch,并确认其与CUDA版本的兼容性。 现在,用户的问题可能存在的误区是CUDA版本是否正确。比如,目前最新的CUDA版本可能不是12.8,所以需要引导用户确认正确的版本。此外,安装过程中可能会遇到路径问题,或者环境变量配置错误,需要详细说明每一步的操作。 另外,用户可能是在进行深度学习环境的配置,因此需要确保CUDAcuDNNPyTorchTensorFlow版本之间的兼容性。例如,PyTorch的某个版本可能只支持特定的CUDA版本,所以需要提醒用户查看官方文档的兼容性表格。 总结步骤应该是: 1. 确认显卡支持CUDA,并确定支持的版本。 2. 下载对应的CUDA Toolkit安装程序。 3. 安装CUDA,并配置环境变量。 4. 注册并下载对应版本的cuDNN,复制文件到CUDA目录。 5. 验证安装是否成功。 6. 安装Anaconda,创建虚拟环境安装PyTorch等框架。 在回答时,需要确保所有命令和路径适用于Windows系统,比如使用命令行工具如nvcc --version来验证CUDA安装,以及正确设置PATH环境变量。 可能的问题包括用户下载了错误的cuDNN版本,导致与CUDA不兼容,或者安装CUDA时没有选择正确的组件。此外,用户可能会遇到权限问题,需要以管理员身份运行安装程序。 最后,需要生成相关问题,帮助用户进一步解决可能遇到的后续问题,比如如何测试CUDA是否正常工作,如何更新驱动,或者如何处理版本不匹配的问题。</think>### Windows系统CUDA 12.8cuDNN安装指南 #### 一、安装前的准备 1. **确认显卡支持CUDA** - 通过设备管理器查看显卡型号(右键“此电脑” → “管理” → “设备管理器” → “显示适配器”)[^3]。 - 访问[NVIDIA CUDA GPU支持列表](https://developer.nvidia.com/cuda-gpus)确认显卡是否支持CUDA 12.8。 2. **更新显卡驱动** - 访问[NVIDIA驱动下载页](https://www.nvidia.cn/Download/index.aspx),下载并安装最新驱动。 #### 二、安装CUDA 12.8 1. **下载CUDA Toolkit** - 访问[CUDA Toolkit Archive](https://developer.nvidia.com/cuda-toolkit-archive),选择**CUDA 12.8**(若官网未列出12.8版本,请检查版本号或选择相近版本如12.x)。 2. **运行安装程序** - 双击下载的`.exe`文件,按默认路径安装(建议路径为`C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v12.8`)。 - 安装类型选择**自定义**,勾选以下组件: - `CUDA`(核心组件) - `CUDA Documentation`(可选) - `CUDA Samples`(可选,用于验证) 3. **配置环境变量** - 添加以下路径到系统变量`PATH`: ``` C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v12.8\bin C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v12.8\libnvvp ``` 4. **验证安装** - 打开命令提示符,输入: ```bash nvcc --version ``` 若显示`Cuda compilation tools, release 12.8`则安装成功。 #### 三、安装cuDNN 1. **下载cuDNN** - 访问[cuDNN下载页](https://developer.nvidia.com/cudnn)(需注册NVIDIA账号),选择与CUDA 12.8兼容的版本(如`cuDNN v8.x.x for CUDA 12.x`)[^2]。 2. **解压并复制文件** - 解压下载的`.zip`文件,将以下文件夹内容复制到CUDA安装目录: - `bin` → `C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v12.8\bin` - `include` → `C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v12.8\include` - `lib` → `C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v12.8\lib` 3. **验证cuDNN** - 运行CUDA Samples中的`deviceQuery`程序(位于安装路径的`extras\demo_suite`目录),若输出包含`cuDNN Version`信息则成功。 #### 四、配置深度学习框架(可选) 1. **安装Anaconda** - 下载并安装[Anaconda](https://www.anaconda.com/products/distribution),创建虚拟环境: ```bash conda create -n pytorch_env python=3.9 conda activate pytorch_env ``` 2. **安装PyTorch** - 访问[PyTorch官网](https://pytorch.org/),选择与CUDA 12.8兼容的命令,例如: ```bash pip3 install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu121 ``` ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值