9. 图像去噪-cv2.blur()、cv2.medianBlur()、cv2.filter2D()、cv2.GuassianBlur()

本文介绍了图像去噪的概念,并详细讲解了使用OpenCV进行图像去噪的四种方法:均值滤波、中值滤波、自定义滤波和高斯滤波。均值滤波通过邻域平均法减少噪声;中值滤波尤其适合去除椒盐噪声;自定义滤波允许用户设计自己的滤波器;高斯滤波则用于消除高斯噪声。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1. 什么是图像去噪?

图像去噪是指减少数字图像中噪声的过程.

2. 去噪方法

2.1 均值滤波

均值滤波也称为线性滤波,其采用的主要方法为邻域平均法。线性滤波的基本原理是用均值代替原图像中的各个像素值,即对待处理的当前像素点(x,y),选择一个模板,该模板由其近邻的若干像素组成,求模板中所有像素的均值,再把该均值赋予当前像素点(x,y),作为处理后图像在该点上的灰度g(x,y),即g(x,y)=1/m ∑f(x,y) m为该模板中包含当前像素在内的像素总个数。

函数实现:cv2.blur(img,ksize) , ksize为卷积核的大小。

2.2 中值滤波

中值滤波法是一种非线性平滑技术,它将每一像素点的灰度值设置为该点某邻域窗口内的所有像素点灰度值的中值

函数实现:cv2.medianBlur(img, k) ,k为方框的尺寸 

中值滤波最适合去除椒盐噪声。

2.3 自定义去噪

函数原型:cv2.filter2D( src, dst, int ddepth, InputArray kernel, Point anchor=Point(-1,-1), double delta=0, int borderType=BORDER_DEFAULT )

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值