讨论 transformers 在计算机视觉中的应用,如 Vision Transformer(ViT)(面试题200合集,中低频、重要)

Transformer架构最初在自然语言处理(NLP)领域取得了革命性的成功,尤其以其在捕捉长距离依赖关系方面的卓越能力而闻名。受此启发,研究者们开始探索将其应用于计算机视觉(CV)领域。传统上,计算机视觉任务(如图像分类、目标检测、图像分割等)主要由卷积神经网络(CNN)主导,CNN通过其固有的局部感受野、权重共享和平移等变性等归纳偏置,在处理图像数据方面表现出色。然而,CNN在捕捉全局上下文信息和长距离依赖方面可能存在局限性。Transformer的引入为计算机视觉提供了一种新的视角和强大的工具,尤其是在需要全局理解的场景中。

Vision Transformer (ViT) 详解

Vision Transformer (ViT) 是Google团队于2020年提出的一种直接将Transformer架构应用于图像分类的模型,它标志着Transformer在CV领域应用的一个重要里程碑。ViT的核心思想是将图像视为一系列“词块”(patches),然后利用标准的Transformer编码器来处理这些词块序列。

1. ViT的核心架构与步骤

ViT的整体流程可以分解为以下几个关键步骤:

  • 图像分块 (Image Patching)
    给定一个输入图像 x∈RH×W×Cx \in \mathbb{R}^{H \times W \times C}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

快撑死的鱼

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值