讨论 Batch Normalization 的理论解释
Batch Normalization (BN) 自 2015 年由 Sergey Ioffe 和 Christian Szegedy 提出以来,已成为深度神经网络(DNNs)中一项非常流行且有效的技术。它通过规范化网络内部激活值的分布,显著加速了深度网络的训练过程,提高了模型的性能和稳定性。理解 BN 的工作原理和其有效性的理论解释对于设计和优化深度学习模型至关重要。
Batch Normalization 如何工作?
在讨论理论之前,我们先回顾一下 BN 的核心操作。对于一个 mini-batch 的数据,在网络的每一层(通常在非线性激活函数之前,有时也在之后),BN 对该层的输入(或激活值) xxx 执行以下操作:
-
计算 Mini-Batch 均值 (