讨论 batch normalization 的理论解释(面试题200合集,中频、实用)

讨论 Batch Normalization 的理论解释

Batch Normalization (BN) 自 2015 年由 Sergey Ioffe 和 Christian Szegedy 提出以来,已成为深度神经网络(DNNs)中一项非常流行且有效的技术。它通过规范化网络内部激活值的分布,显著加速了深度网络的训练过程,提高了模型的性能和稳定性。理解 BN 的工作原理和其有效性的理论解释对于设计和优化深度学习模型至关重要。

Batch Normalization 如何工作?

在讨论理论之前,我们先回顾一下 BN 的核心操作。对于一个 mini-batch 的数据,在网络的每一层(通常在非线性激活函数之前,有时也在之后),BN 对该层的输入(或激活值) xxx 执行以下操作:

  1. 计算 Mini-Batch 均值 (

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

快撑死的鱼

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值