代码随想录算法训练
—day60
文章目录
前言
今天是算法营的第60天,希望自己能够坚持下来!
今天开始学并查集,今日任务:
● 并查集理论基础
● 寻找存在的路径
一、并查集理论基础
并查集主要有两个功能:
- 将两个元素添加到一个集合中。
- 判断两个元素在不在同一个集合。
元素连接join
将三个元素A,B,C (分别是数字)放在同一个集合,其实就是将三个元素连通在一起,如何连通呢。
只需要用一个一维数组来表示,即:father[A] = B,father[B] = C 这样就表述 A 与 B 与 C连通了(有向连通图)。
代码如下:
// 将v,u 这条边加入并查集
void join(int u, int v) {
u = find(u); // 寻找u的根
v = find(v); // 寻找v的根
if (u == v) return; // 如果发现根相同,则说明在一个集合,不用两个节点相连直接返回
father[v] = u;
}
寻根find
只要 A ,B,C 在同一个根下就是同一个集合。
给出A元素,就可以通过 father[A] = B,father[B] = C,找到根为 C。
给出B元素,就可以通过 father[B] = C,找到根也为为 C,说明 A 和 B 是在同一个集合里。
代码如下:
// 并查集里寻根的过程
int find(int u) {
if (u == father[u]) return u; // 如果根就是自己,直接返回
else return find(father[u]); // 如果根不是自己,就根据数组下标一层一层向下找
}
初始化init
如何表示 C 也在同一个元素里呢? 我们需要 father[C] = C,即C的根也为C,这样就方便表示 A,B,C 都在同一个集合里了。
所以father数组初始化的时候要 father[i] = i,默认自己指向自己。
代码如下:
// 并查集初始化
void init() {
for (int i = 0; i < n; ++i) {
father[i] = i;