【目标检测】YOLOV3详解

YOLOv3在保持速度优势的同时提升了检测精度,尤其对小物体检测有显著提升。通过DarkNet-53网络结构,采用多尺度预测和改进的训练策略与损失函数,实现多尺度物体检测。网络中使用残差思想,无池化层,以及多层特征图融合。此外,YOLOv3的损失函数考虑了正例、忽略样本和负例,优化了训练过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

前言

前面的V1、V2已经讲完了,再讲解一下YOLOV3了。v3除了网络结构,其余变动不多,主要是将当今一些较好的检测思想融入到了YOLO中,在保持速度优势的前提下,进一步提升了检测精度,尤其是对小物体的检测能力。具体来说,YOLOv3主要改进了网络结构、网络特征及后续计算三个部分。

1、网络架构

YOLOv3继续吸收了当前优秀的检测框架的思想,如残差网络和特征融合等,提出了如图下图所示的网络结构,称之为DarkNet-53。作者在ImageNet上实验发现darknet-53相对于ResNet-152和ResNet101,不仅在分类精度上差不多,计算速度还比ResNet-152和ResNet-101强多了,网络层数也比它们少。

在这里插入图片描述

 ● DBL:代表卷积、BN及Leaky ReLU三层的组合,在YOLOv3中卷积都是以这样的组合出现的,构成了DarkNet的基本单元。DBL后面的数字代表有几个DBL模块。
● res:res代表残差模块,res后面的数字代表有几个串联的残差模块。
● 上采样:上采样使用的方式为上池化,即元素复制扩充的方法使得特征图尺寸扩大,没有学习参数。
● Concat:上采样后将深层与浅层的特征图进行Concat操作,即通道的拼接,类似于FPN,但FPN使用的是逐元素相加。
● 残差思想:DarkNet-53借鉴了ResNet的残差思想,在基础网络中大量使用了残差连接,因此网络结构可以设计的很深,并且缓解了训练中梯度消失的问题,使得模型更容易收敛。
● 多层特征图:通过上采样与Concat操作,融合了深、浅层的特征,最终输出了3种尺寸的特征图,用于后续检测。多层特征图对于多尺度物体及小物体检测是有利的。
● 无池化层:之前的YOLO网络有5个最大池化层,用来缩小特征图的尺寸,下采样率为32,而DarkNe

评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值